1 |
郑凤仙, 王夏黎, 何丹丹, 等. 单幅图像去雾算法研究综述[J]. 计算机工程与应用, 2022, 58 (3): 1- 14.
|
|
ZHENG F X , WANG X L , HE D D , et al. A review of research on single-image dehaze algorithms[J]. Computer Engineering and Applications, 2022, 58 (3): 1- 14.
|
2 |
CAI B L , XU X M , JIA K , et al. DehazeNet: an end-to-end system for single image haze removal[J]. IEEE Trans.on Image Processing, 2016, 25 (11): 5187- 5198.
doi: 10.1109/TIP.2016.2598681
|
3 |
QIN X, WANG Z L, BAI Y C, et al. FFA-Net: feature fusion attention network for single image dehazing[EB/OL]. [2019-11-18]. https://arxiv.org/abs/1911.07559.
|
4 |
NARASIMHAN S G , NAYAR S K . Contrast restoration of weather degraded images[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003, 25 (6): 713- 724.
doi: 10.1109/TPAMI.2003.1201821
|
5 |
ZHU Q S , MAI J M , SHAO L . A fast single image haze removal algorithm using color attenuation prior[J]. IEEE Trans. on Image Processing, 2015, 24 (11): 3522- 3533.
doi: 10.1109/TIP.2015.2446191
|
6 |
HE K M , SUN J , TANG X O , et al. Single image haze removal using dark channel prior[J]. IEEE Trans. on Pattern Analysis & Machine Intelligence, 2011, 33 (12): 2341- 2353.
|
7 |
JU M Y , DING C , REN W Q , et al. IDE: Image dehazing and exposure using enhanced atmospheric scattering model[J]. IEEE Trans. on Image Processing, 2021, 30, 2180- 2192.
doi: 10.1109/TIP.2021.3050643
|
8 |
LI B Y, PENG X L, WANG Z Y, et al. AOD-Net: all-in-one dehazing network[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 4770 - 4778.
|
9 |
ZHANG H, PATEL V M. Densely connected pyramid dehazing network[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 3194-3203.
|
10 |
REN W Q, MA L, ZHANG J W, et al. Gated fusion network for single image dehazing[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 3253-3261.
|
11 |
汪美琴, 袁伟伟, 张继业. 生成对抗网络GAN的研究综述[J]. 计算机工程与设计, 2021, 42 (12): 3389- 3395.
doi: 10.16208/j.issn1000-7024.2021.12.012
|
|
WANG M Q , YUAN W W , ZHANG J Y . A review of research on generative adversarial network GANs[J]. Computer Engineering and Design, 2021, 42 (12): 3389- 3395.
doi: 10.16208/j.issn1000-7024.2021.12.012
|
12 |
QU Y Y, CHEN Y Z, HUANG J Y, et al. Enhanced pix2pix dehazing network[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 8160-8168.
|
13 |
SHAO Y J, LI L H, REN W Q, et al. Domain adaptation for image dehazing[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 2808-2817.
|
14 |
LIU X H, MA Y R, SHI Z H, et al. Griddehazenet: attention-based multi-scale network for image dehazing[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2019: 7314-7323.
|
15 |
CUI T, ZHANG Z, TANG Y D, et al. Multi-scale densely connected dehazing network[C]//Proc. of the International Conference on Intelligent Robotics and Applications, 2019: 594-604.
|
16 |
HUA Z , FAN G D , LI J J . Iterative residual network for image dehazing[J]. IEEE Access, 2020, 8, 167693- 167710.
doi: 10.1109/ACCESS.2020.3023906
|
17 |
范新南, 赵忠鑫, 严炜, 等. 结合注意力机制的多尺度特征融合图像去雾算法[J]. 计算机科学, 2022, 49 (5): 50- 57.
|
|
FAN X N , ZHAO Z X , YAN W , et al. Multi-scale feature fusion image defog algorithm combined with attention mechanism[J]. Computer Science, 2022, 49 (5): 50- 57.
|
18 |
DONG H, PAN J S, XIANG L, et al. Multi-scale boosted dehazing network with dense feature fusion[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 2157-2167.
|
19 |
ZHENG J H , LIU X Y , WANG X D . Single image cloud removal using U-Net and generative adversarial networks[J]. IEEE Trans.on Geoscience and Remote Sensing, 2020, 59, 6371- 6385.
|
20 |
田元, 李方迪. 基于深度信息的人体姿态识别研究综述[J]. 计算机工程与应用, 2020, 56 (4): 1- 8.
|
|
TIAN Y , LI F D . A review of human posture recognition research based on depth information[J]. Computer Engineering and Applications, 2020, 56 (4): 1- 8.
|
21 |
鞠默然, 罗江宁, 王仲博, 等. 融合注意力机制的多尺度目标检测算法[J]. 光学学报, 2020, 40 (13): 1315002.
|
|
JU M R , LUO J N , WANG Z B , et al. Multi-scale object detection algorithm that incorporates attention mechanisms[J]. Acta Optica Sinica, 2020, 40 (13): 1315002.
|
22 |
FU X Y , LIANG B R , HUANG Y , et al. Lightweight pyramid networks for image deraining[J]. IEEE Trans.on Neural Networks and Learning Systems, 2019, 31 (6): 1794- 1807.
|
23 |
SUIN M, PUROHIT K, RAJAGOPALANA N. Spatially-attentive patch-hierarchical network for adaptive motion deblurring[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 3606-3615.
|
24 |
REN W Q , PAN J S , ZHANG H , et al. Single image dehazing via multi-scale convolutional neural networks with holistic edges[J]. International Journal of Computer Vision, 2020, 128 (1): 240- 259.
|
25 |
ZHAO S Y , ZHANG L , SHEN Y , et al. RefineDNet: a weakly supervised refinement framework for single image dehazing[J]. IEEE Trans.on Image Processing, 2021, 30, 3391- 3404.
|
26 |
WOO S, PARK J C, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proc. of the European Conference on Computer Vision, 2018: 3-19.
|
27 |
TANG K , XU D H , LIU H , et al. Context module based multi-patch hierarchical network for motion deblurring[J]. Neural Processing Letters, 2021, 53 (1): 211- 226.
|
28 |
HE K M , SUN J , TANG X . Guided image filtering[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2013, 35 (6): 1397- 1409.
|
29 |
ZHANG S H, FU H Z, YAN Y G, et al. Attention guided network for retinal image segmentation[C]//Proc. of the International Conference on Medical Image Computing and Computer-assisted Intervention, 2019: 797-805.
|
30 |
JUSTIN J, ALEXANDRE A, LI F F. Perceptual losses for real-time style transfer and super-resolution[C]//Proc. of the European Conference on Computer Vision, 2016: 694-711.
|
31 |
ADAM P , SAM G , FRANCISCO M , et al. Pytorch: an imperative style, high-performance deep learning library[J]. Advances in Neural Information Processing Systems, 2019, 32, 8026- 8037.
|
32 |
LI B Y , REN W Q , FU D P , et al. Benchmarking single-image dehazing and beyond[J]. IEEE Trans.on Image Processing, 2018, 28 (1): 492- 505.
|