系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (11): 3419-3427.doi: 10.12305/j.issn.1001-506X.2023.11.07

• 电子技术 • 上一篇    下一篇

基于感知融合机制的渐进式去雾网络

齐城慧, 张登银   

  1. 南京邮电大学物联网学院, 江苏南京 210003
  • 收稿日期:2022-02-24 出版日期:2023-10-25 发布日期:2023-10-31
  • 通讯作者: 张登银
  • 作者简介:齐城慧(1997—), 女, 硕士研究生, 主要研究方向为计算机视觉、图像去雾
    张登银(1964—), 男, 研究员, 博士研究生导师, 主要研究方向为图像去雾、云计算、无线通信与智能信号处理
  • 基金资助:
    国家自然科学基金(61872423);江苏省高等学校自然科学研究重大项目(19KJA180006)

Progressive image dehaze based on perceptual fusion

Chenghui QI, Dengyin ZHANG   

  1. School of Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
  • Received:2022-02-24 Online:2023-10-25 Published:2023-10-31
  • Contact: Dengyin ZHANG

摘要:

智能辅助驾驶应用场景对图像去雾的准确性和实时性要求较高。提出了一种新颖的基于感知融合机制的渐进式去雾网络(progressive dehaze network, PD-Net), 将降质图像恢复的任务分解为多阶段的子任务, 通过轻量级的子网分块学习特征图的不同区域语义信息, 以提升去雾效率。在此基础上, 基于注意力机制和导向滤波设计跨阶段感知融合模块(perception fusion module, PFM), 自适应感知各阶段提取的多尺度特征并进行融合, 而不损失图像细节信息及边缘结构信息。实验结果表明, 与现有主流的端对端去雾模型相比, 所提出的算法在处理户外图像时具有更高的准确度和实时性, 在公开的合成对象测试集(synthetic object testing set, SOTS)上的峰值信噪比(peak signal to noise ratio, PSNR)与现有最好结果相比提升了0.93 dB, 处理单幅图像仅需72 ms, 提出的网络模型有望应用于智能交通等现实领域。

关键词: 图像去雾, 注意力机制, 导向滤波, 感知融合

Abstract:

Intelligent assisted driving application scenarios require higher accuracy and real-time performance for image dehazing. This paper proposes a novel progressive dehaze network (PD-Net) based on perceptual fusion mechanism to improve the efficiency and accuracy of image dehaze. This method decomposes the task of degraded image recovery into multi-stage subtasks and uses lightweight subnetwork chunk to learn semantic information of different regions of the feature map to ensure image dehazing efficiency. On this basis, the cross-stage perception fusion module (PFM) is introduced based on the attention mechanism and guided filtering. It adaptively percepts semantic features and fuse the features in a cascading manner without losing image edges and texture details. Experimental results show that compared with the existing mainstream end-to-end dehazing models, the algorithm proposed in this paper has higher accuracy and real-time performance in processing outdoor images, with peaksignal to noise ratio (PSNR) improved by 0.93 dB compared with the best results available on the public synthetic object testing set (SOTS), which consumes only 72 ms when processing a single image.

Key words: image dehaze, attention mechanism, guided filter, perception fusion

中图分类号: