1 |
BIALER O , JONAS A , TIRER T . Super resolution wide aperture automotive radar[J]. IEEE Sensors Journal, 2021, 21 (16): 17846- 17858.
doi: 10.1109/JSEN.2021.3085677
|
2 |
ENGELS F , HEIDENREICH P , WINTERMANTEL M , et al. Automotive radar signal processing: research directions and practical challenges[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15 (4): 865- 878.
doi: 10.1109/JSTSP.2021.3063666
|
3 |
LIN Y C , LEE T S , PAN Y H , et al. Low-complexity high-resolution parameter estimation for automotive MIMO radars[J]. IEEE Access, 2020, 8, 16127- 16138.
doi: 10.1109/ACCESS.2019.2926413
|
4 |
SUN S , ZHANG Y D . 4D automotive radar sensing for autonomous vehicles: a sparsity-oriented approach[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15 (4): 879- 891.
doi: 10.1109/JSTSP.2021.3079626
|
5 |
BOSE A , TANG B , SOLTANALIAN M , et al. Mutual interference mitigation for multiple connected automotive radar systems[J]. IEEE Trans.on Vehicular Technology, 2021, 70 (10): 11062- 11066.
doi: 10.1109/TVT.2021.3108714
|
6 |
PATOLE S M , TORLAK M , WANG D , et al. Automotive radars: a review of signal processing techniques[J]. IEEE Signal Processing Magazine, 2017, 34 (2): 22- 35.
doi: 10.1109/MSP.2016.2628914
|
7 |
SCHWARZ D , RIESE N , DORSCH I , et al. System performance of a 79 GHz high-resolution 4D imaging MIMO radar with 1728 virtual channels[J]. IEEE Journal of Microwaves, 2022, 2 (4): 637- 647.
doi: 10.1109/JMW.2022.3196454
|
8 |
MODAS A , SANCHEZ-MATILLA R , FROSSARD P , et al. Toward robust sensing for autonomous vehicles: an adversarial perspective[J]. IEEE Signal Processing Magazine, 2020, 37 (4): 14- 23.
doi: 10.1109/MSP.2020.2985363
|
9 |
SUN Y L, BAUDUIN M, BOURDOUX A. Enhancing unambiguous velocity in Doppler-division multiplexing MIMO radar[C]//Proc. of the 18th European Radar Conference, 2022: 493-496.
|
10 |
BARAL A B , TORLAK M . Joint doppler frequency and direction of arrival estimation for TDM MIMO automotive radars[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15 (4): 980- 995.
doi: 10.1109/JSTSP.2021.3073572
|
11 |
BECHTER J , ROOS F , WALDSCHMIDT C . Compensation of motion-induced phase errors in TDM MIMO radars[J]. IEEE Microwave and Wireless Components Letters, 2017, 27 (12): 1164- 1166.
doi: 10.1109/LMWC.2017.2751301
|
12 |
ZHANG Y , ZHU C K , DONG S Q , et al. 3-D motion imaging in a multipath coordinate space based on a TDM-MIMO radar sensor[J]. IEEE Trans.on Microwave Theory and Techniques, 2020, 61 (11): 4642- 4651.
|
13 |
HU X Y , LI Y , LU M , et al. A multi-carrier-frequency random-transmission chirp sequence for TDM MIMO automotive radar[J]. IEEE Trans.on Vehicular Technology, 2019, 68 (4): 3672- 3685.
doi: 10.1109/TVT.2019.2900357
|
14 |
LI X R , WANG X , YANG Q , et al. Signal processing for TDM MIMO FMCW millimeter-wave radar sensors[J]. IEEE Access, 2021, 9, 167959- 167971.
doi: 10.1109/ACCESS.2021.3137387
|
15 |
WALDSCHMIDT C , HASCH J , MENZEL W . Automotive radar—from first efforts to future systems[J]. IEEE Journal of Microwaves, 2022, 1 (1): 135- 148.
|
16 |
KRONAUGE M, SCHROEDER C, ROHLING H. Radar target detection and Doppler ambiguity resolution[C]//Proc. of the 11th International Radar Symposium, 2010.
|
17 |
王元恺. 调频序列汽车雷达信号处理方法研究[D]. 南京: 南京理工大学, 2018.
|
|
WANG Y K. Research on signal processing method for chirp squeeze automotive radar[D]. Nanjing: Nanjing University of Science and Technology, 2018.
|
18 |
陈盼. 频扫FMCW雷达低慢小目标检测方法研究[D]. 西安: 西安电子科技大学, 2021.
|
|
CHEN P. Research of LSS-target detection method based on frequency-scanning FMCW radar[D]. Xi'an: Xidian University, 2021.
|
19 |
冯昆. 毫米波雷达混合波形与目标检测算法研究[D]. 广州: 广东工业大学, 2021.
|
|
FENG K. Research on hybrid waveform and target detection algorithm of millimeter wave radar[D]. Guangdong: Guangdong University of Technology, 2021.
|
20 |
KRONAUGE M , ROHLING H . New chirp sequence radarwaveform[J]. IEEE Trans.on Aerospace and Electronic Systems, 2014, 50 (4): 2870- 2877.
doi: 10.1109/TAES.2014.120813
|
21 |
ROHLING H, KRONAUGE M. New radar waveform based on a chirp sequence[C]//Proc. of the International Radar Conference, 2014.
|
22 |
PLŠIČÍK R, DANKO M. Introduction to using mmWave Radar development board AWR1843[C]//Proc. of the ELEKTRO, 2022.
|
23 |
GENNARELLI G , NOVIELLO C , LUDENO G , et al. 24 GHz FMCW MIMO radar for marine target localization: a feasibility study[J]. IEEE Access, 2022, 10, 68240- 68256.
doi: 10.1109/ACCESS.2022.3186052
|
24 |
DORIS K , FILIPPI A , JANSEN F . Reframing fast-chirp FMCW transceivers for future automotive radar: the pathway to higher resolution[J]. IEEE Solid-State Circuits Magazine, 2022, 14 (2): 44- 55.
doi: 10.1109/MSSC.2022.3167344
|
25 |
TAN K , YIN T T , RUAN H N , et al. Learning approach to FMCW radar target classification with feature extraction from wave physics[J]. IEEE Trans.on Antennas and Propagation, 2022, 70 (8): 6287- 6299.
doi: 10.1109/TAP.2022.3175716
|
26 |
KINGERY A , SONG D Z . Improving ego-velocity estimation of low-cost Doppler radars for vehicles[J]. IEEE Robotics and Automation Letters, 2022, 7 (4): 9445- 9452.
doi: 10.1109/LRA.2022.3191247
|
27 |
LINDENMAIER L , ARADI S , BÉCSI T , et al. GM-PHD filter based sensor data fusion for automotive frontal perception system[J]. IEEE Trans.on Vehicular Technology, 2022, 71 (7): 7215- 7229.
doi: 10.1109/TVT.2022.3171040
|
28 |
RAGONESE E , PAPOTTO G , NOCERA C , et al. CMOS automotive radar sensors: mm-wave circuit design challenges[J]. IEEE Trans.on Circuits and Systems Ⅱ: Express Briefs, 2022, 69 (6): 2610- 2616.
doi: 10.1109/TCSII.2022.3170317
|
29 |
HAGGAG K , LANGE S , PFEIFER T , et al. A credible and robust approach to ego-motion estimation using an automotive radar[J]. IEEE Robotics and Automation Letters, 2022, 7 (3): 6020- 6027.
doi: 10.1109/LRA.2022.3162644
|
30 |
SANG T H , TSENG K Y , CHIEN F T , et al. Deep-learning-based velocity estimation for FMCW radar with random pulse position modulation[J]. IEEE Sensors Letters, 2022, 6 (3): 7000804.
|