1 |
WANG X , ZHANG M , LIU L , et al. Using EEM-PARAFAC to identify and trace the pollution sources of surface water with receptor models in taihu lake basin, China[J]. Journal of Environmental Management, 2022, 321, 115925.
doi: 10.1016/j.jenvman.2022.115925
|
2 |
ZHU Y N , WANG K X , LIN Y X , et al. An online contaminant classification method based on MF-DCCA using conventional water quality indicators[J]. Processes, 2020, 8 (2): 178.
doi: 10.3390/pr8020178
|
3 |
RUANGPAYOONGSAK N, SUMROENGRIT J, LEANGLUM M. A floating waste scooper robot on water surface[C]// Proc. of the International Conference on Control, Automation and Systems (ICCAS), 2017: 1543-1548.
|
4 |
GOUTAM M A , RAMESH W U , CHAKRABORTY R , et al. A review on modern and smart technologies for efficient waste disposal and management[J]. Journal of Environmental Management, 2021, 297, 113347.
doi: 10.1016/j.jenvman.2021.113347
|
5 |
ZHOU Z G , SUN J E , YU J B , et al. An image-based benchmark dataset and a novel object detector for water surface object detection[J]. Frontiers in Neurorobotics, 2021,
|
6 |
REN S Q, HE K M, GIRSHICK R, et al. Faster RCNN: towards real-time object detection with region proposal networks[C]// Proc. of the IEEE International Conference on Neural Information Processing Systems, 2015: 91-99.
|
7 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proc. of the IEEE Conference on Computer Vision And Pattern Recognition, 2016: 779-788.
|
8 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proc. of the 14th European Conference on Computer Vision, 2016: 21-37.
|
9 |
CHENG Y , JIANG M , ZHU J , et al. Are we ready for unmanned surface vehicles in inland waterways? The USV in land multisensor dataset and benchmark[J]. IEEE Robotics and Automation Letters, 2021, 6 (2): 3964- 3970.
doi: 10.1109/LRA.2021.3067271
|
10 |
BAI Y, ZHANG Y, DING M, et al. SOD-MTGAN: small object detection via multi-task generative adversarial network[C]// Proc. of the Computer Vision, 2018: 210-226.
|
11 |
TSUNG Y L, PIOTR D, ROSS G, et al. Feature pyramid networks for object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
|
12 |
LI J, LIANG X, WEI Y, et al. Perceptual generative adversarial networks for small object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 1951-1959.
|
13 |
LIU Z , LIU J , ZUO X , et al. Multi-scale iterative refinement network for RGB-D salient object detection[J]. Engineering Applications of Artificial Intelligence, 2021, 106, 104473.
doi: 10.1016/j.engappai.2021.104473
|
14 |
汪云云, 孙顾威, 赵国祥, 等. 基于自监督知识的无监督新集域适应学习[J]. 软件学报, 2022, 33 (4): 1170- 1182.
|
|
WANG Y Y , SUN G W , ZHAO G X , et al. Unsupervised new-set domain adaptation with self-supervised knowledge[J]. Journal of Software, 2022, 33 (4): 1170- 1182.
|
15 |
LI X , YE M , LIU Y , et al. Adaptive deep convolutional neural networks for scene-specific object detection[J]. IEEE Trans.on Circuits and Systems for Video Technology, 2019, 29 (9): 2538- 2551.
doi: 10.1109/TCSVT.2017.2749620
|
16 |
JIA Y , ZHANG J , SHAN S , et al. Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing[J]. Pattern Recognition, 2021, 115, 107888.
doi: 10.1016/j.patcog.2021.107888
|
17 |
CHEN Y, LI W, SAKARIDIS C, et al. Domain adaptive faster R-CNN for object detection in the wild[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 3339-3348.
|
18 |
JIANG N , FANG J , XU J , et al. SSD based on contour-material level for domain adaptation[J]. Pattern Analysis and Applications, 2021, 24 (3): 1221- 1229.
doi: 10.1007/s10044-021-00986-w
|
19 |
XIONG L , YE M , ZHANG D , et al. Source data-free domain adaptation for a faster R-CNN[J]. Pattern Recognition, 2022, 124, 108436.
doi: 10.1016/j.patcog.2021.108436
|
20 |
KIM T, JEONG M, KIM S, et al. Diversify and match: a domain adaptive representation learning paradigm for object detection[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019: 12448-12457.
|
21 |
范苍宁, 刘鹏, 肖婷, 等. 深度域适应综述: 一般情况与复杂情况[J]. 自动化学报, 2021, 47 (3): 515- 548.
|
|
FAN C N , LIU P , XIAO T , et al. A review of deep domain adaptation: general situation and complex situation[J]. Acta Automatica Sinica, 2021, 47 (3): 515- 548.
|
22 |
TAUFIQUE A M, JAHAN C S, SAVAKIS A E. ConDA: continual unsupervised domain adaptation[EB/OL]. [2022-09-18]. https://arxiv.org/abs/2103.11056.
|
23 |
HOFFMAN J, DARRELL T, SAENKO K. Continuous manifold based adaptation for evolving visual domains[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 867-874.
|
24 |
WULFMEIER M, BEWLEY A, POSNER I. Incremental adversarial domain adaptation for continually changing environments[C]//Proc. of the IEEE International Conference on Robotics and Automation (ICRA), 2018: 4489-4495.
|
25 |
VOLPI R, LARLUS D, ROGEZ G. Continual adaptation of visual representations via domain randomization and meta-learning[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021: 4441-4451.
|
26 |
LENGA M, SCHULZ H, SAALBACH A. Continual learning for domain adaptation in chest x-ray classification[EB/OL]. [2022-09-18]. https://arxiv.org/abs/2001.05922.
|
27 |
魏文晓, 刘洁瑜, 沈强, 等. 基于人眼视点图的特征融合小目标检测算法[J]. 系统工程与电子技术, 2022, 44 (4): 1120- 1127.
doi: 10.12305/j.issn.1001-506X.2022.04.07
|
|
WEI W X , LIU J Y , SHEN Q , et al. Feature fusion small target detection algorithm based on human eye view-point map[J]. Systems Engineering and Electronics, 2022, 44 (4): 1120- 1127.
doi: 10.12305/j.issn.1001-506X.2022.04.07
|
28 |
FISHER Y, VLADLEN K. Multi-scale context aggregation by dilated convolutions[EB/OL]. [2022-09-18]. https://arxiv.org/arXiv:1511.07122.
|
29 |
LIANG J, HU D, FENG J. Do we really need to access the source data? source hypothesis transfer for unsupervised domain adaptation[EB/OL]. [2022-09-18]. https://arxiv.org/abs/2002.08546.
|
30 |
ANDREAS K, PIETRO P, RYAN G. Discriminative clustering by regularized information maximization[C]//Proc. of the 23rd International Conference on Neural Information Processing Systems, 2010: 775-783.
|
31 |
HU W, MIYATO T, TOKUI S, et al. Learning discrete representations via information maximizing self-augmented training[C]// Proc. of the 34th International Conference on Machine Learning, 2017: 1558-1567.
|
32 |
JIANG J, CHEN B, WANG J, et al. Decoupled adaptation for cross-domain object detection[EB/OL]. [2022-09-18]. https://arxiv.org/abs/2110.02578.
|