系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (10): 3329-3337.doi: 10.12305/j.issn.1001-506X.2023.10.38
• 可靠性 • 上一篇
陈毓坤1, 于晖2, 陆宁云1,*
收稿日期:
2022-09-21
出版日期:
2023-09-25
发布日期:
2023-10-11
通讯作者:
陆宁云
作者简介:
陈毓坤(1998—), 女, 硕士研究生, 主要研究方向为故障诊断与健康管理基金资助:
Yukun CHEN1, Hui YU2, Ningyun LU1,*
Received:
2022-09-21
Online:
2023-09-25
Published:
2023-10-11
Contact:
Ningyun LU
摘要:
新一代相控阵雷达针对T/R组件部署了大量传感器, 为数据驱动的组件故障诊断提供了良好基础。然而, 实际监测数据大多没有表征其故障模式的标签。结合深度置信网络(deep belief network, DBN)在特征自学习方面的优势和自编码器(auto-encoder, AE)重构输入数据的能力, 提出一种基于DBN-AE半监督学习模型的故障特征提取及智能诊断方法, 并应用烟花算法优化模型结构。该方法利用原始无标签状态数据训练DBN-AE模型, 提取深层特征, 再通过有监督再训练建立深层特征与故障模式之间的关系模型。所提方法在某型相控阵雷达T/R模块上得到了实验验证, 有效提升了故障识别准确率和智能水准。
中图分类号:
陈毓坤, 于晖, 陆宁云. 基于半监督深度学习的雷达收发组件故障诊断[J]. 系统工程与电子技术, 2023, 45(10): 3329-3337.
Yukun CHEN, Hui YU, Ningyun LU. Fault diagnosis of radar T/R module based on semi-supervised deep learning[J]. Systems Engineering and Electronics, 2023, 45(10): 3329-3337.
1 | CHEN Y K, HU X K, YU H, et al. A health assessment method for radar antenna array system[C]//Proc. of the 41st Chinese Control Conference, 2022: 4028-4033. |
2 |
ZHAO R , YAN R Q , CHEN Z H , et al. Deep learning and its applications to machine health monitoring[J]. Mechanical Systems and Signal Processing, 2019, 115, 213- 237.
doi: 10.1016/j.ymssp.2018.05.050 |
3 | KHAN S , YAIRI T . A review on the application of deep learning in system health management[J]. Mechanical Systems and Signal Processing, 2018, 107 (1): 241- 265. |
4 | 文成林, 吕菲亚. 基于深度学习的故障诊断方法综述[J]. 电子与信息学报, 2020, 42 (1): 234- 248. |
WEN C L , LV F Y . Review on deep learning based fault diagnosis[J]. Journal of Electronics & Information Technology, 2020, 42 (1): 234- 248. | |
5 | BERRY M W , MOHAMED A H , YAP B W . Supervised and unsupervised learning for data science[M]. Cham, Switzerland: Springer, 2010: 3- 21. |
6 |
殷瑞刚, 魏帅, 李晗, 等. 深度学习中的无监督学习方法综述[J]. 计算机系统应用, 2016, 25 (8): 1- 7.
doi: 10.15888/j.cnki.csa.005283 |
YIN R G , WEI S , LI H , et al. Introduction of unsupervised learning methods in deep learning[J]. Computer Science and Applications, 2016, 25 (8): 1- 7.
doi: 10.15888/j.cnki.csa.005283 |
|
7 |
VANE J E , HOOS H H . A survey on semi-supervised learning[J]. Machine Learning, 2020, 109 (2): 373- 440.
doi: 10.1007/s10994-019-05855-6 |
8 |
ZHAO M H , MYEONGSU K , TANG B P , et al. Multiple wavelet coefficients fusion in deep residual networks for fault diagnosis[J]. IEEE Trans.on Industrial Electronics, 2019, 66 (6): 4696- 4706.
doi: 10.1109/TIE.2018.2866050 |
9 | ZHENG J D , CAO S J , PAN H Y , et al. Spectral envelope-based adaptive empirical Fourier decomposition method and its application to rolling bearing fault diagnosis[J]. ISA Transactions, 2022, 129 (Part B): 476- 492. |
10 |
FU Q , JING B , HE P J , et al. Fault feature selection and diagnosis of rolling bearings based on EEMD and optimized Elman_AdaBoost algorithm[J]. IEEE Sensors Journal, 2018, 18 (12): 5024- 5034.
doi: 10.1109/JSEN.2018.2830109 |
11 |
HAN D Y , GUO X C , SHI P M . An intelligent fault diagnosis method of variable condition gearbox based on improved DBN combined with WPEE and MPE[J]. IEEE Access, 2020, 8, 131299- 131309.
doi: 10.1109/ACCESS.2020.3008208 |
12 |
单外平, 曾雪琼. 基于深度信念网络的信号重构与轴承故障识别[J]. 电子设计工程, 2016, 24 (4): 67- 71.
doi: 10.3969/j.issn.1674-6236.2016.04.023 |
SHAN W P , ZENG X Q . Signal reconstruction and bearing fault identification based on deep belief network[J]. Electronic Design Engineering, 2016, 24 (4): 67- 71.
doi: 10.3969/j.issn.1674-6236.2016.04.023 |
|
13 |
GAJJAR S , KULAHCI M , PALAZOGLU A . Real-time fault detection and diagnosis using sparse principal component analysis[J]. Journal of Process Control, 2018, 67, 112- 128.
doi: 10.1016/j.jprocont.2017.03.005 |
14 |
LIU S Y , DONG L , LIAO X Z , et al. Photovoltaic array fault diagnosis based on Gaussian kernel fuzzy c-means clustering algorithm[J]. Sensors, 2019, 19 (7): 1520.
doi: 10.3390/s19071520 |
15 |
YANG J , YANG Y X , XIE G . Diagnosis of incipient fault based on sliding-scale resampling strategy and improved deep autoencoder[J]. IEEE Sensors Journal, 2020, 20 (15): 8336- 8348.
doi: 10.1109/JSEN.2020.2976523 |
16 |
WU X J , XU M D , LI C D , et al. Research on image reconstruction algorithms based on autoencoder neural network of restricted Boltzmann machine[J]. Flow Measurement and Instrumentation, 2021, 80, 102009.
doi: 10.1016/j.flowmeasinst.2021.102009 |
17 | PENG K X , JIAO R H , DONG J , et al. A deep belief network based health indicator construction and remaining useful life prediction using improved particle filter[J]. Neurocomputing, 2019, 361 (C): 19- 28. |
18 | 郭方洪, 易新伟, 徐博文, 等. 基于深度信念网络和迁移学习的隐匿FDI攻击入侵检测[J]. 控制与决策, 2022, 37 (4): 913- 921. |
GUO F H , YI X W , XU B W , et al. Stealthy FDI attack detection based on deep belief network and transfer learning[J]. Control and Decision, 2022, 37 (4): 913- 921. | |
19 |
WU X Y , ZHANG Y , CHENG C M , et al. A hybrid classification autoencoder for semi-supervised fault diagnosis in rotating machinery[J]. Mechanical Systems and Signal Processing, 2021, 149, 107327.
doi: 10.1016/j.ymssp.2020.107327 |
20 |
ZHONG S S , FU S , LIN L . A novel gas turbine fault diagnosis method based on transfer learning with CNN[J]. Measurement, 2019, 137, 435- 453.
doi: 10.1016/j.measurement.2019.01.022 |
21 | ELLEFSEN A L , BJORLYKHAUG E , AESOY V , et al. Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture[J]. Reliability Engineering & System Safety, 2019, 183, 240- 251. |
22 | LIAO Y X , HUANG R Y , LI J P , et al. Deep semi-supervised domain generalization network for rotary machinery fault diagnosis under variable speed[J]. IEEE Trans.on Instrumentation and Measurement, 2020, 69 (10): 8064- 8075. |
23 |
SCHVARTZMAN D , TORRES S M , YU T Y . Distributed beams: concept of operations for polarimetric rotating phased array radar[J]. IEEE Trans.on Geoscience and Remote Sensing, 2021, 59 (11): 9173- 9191.
doi: 10.1109/TGRS.2020.3047090 |
24 | 葛建军, 张春城. 数字阵列雷达[M]. 北京: 国防工业出版社, 2017. |
GE J J , ZHANG C C . Digital array radar[M]. Beijing: National Defense Industry Press, 2017. | |
25 | DING L F , GENG F L , CHEN J C . Radar principles[M]. Beijing: Publishing House of Electronics, 2014: 273- 285. |
26 |
HINTON G E , SALAKHUTDINOV R R . Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313 (5786): 504- 507.
doi: 10.1126/science.1127647 |
27 | FISCHER A , IGEL C . An introduction to restricted boltzmann machines[M]. Heidelberg: Springer Berlin, 2012: 14- 36. |
28 |
HINTON G E , OSINDERO S , TEH Y W . A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18 (7): 1527- 1554.
doi: 10.1162/neco.2006.18.7.1527 |
29 | CHEN Y S , LIN Z H , XING Z , et al. Deep learning-based classification of hyperspectral data[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2014, 7 (6): 2094- 2107. |
30 | BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks[C]//Proc. of the 19th International Conference on Neural Information Processing Systems, 2006: 153-160. |
31 | TAN Y . Fireworks algorithm[M]. Heidelberg: Springer eBook, 2015: 25- 35. |
32 | MOUNA G M , SADOK B . A new multi-objective firework algorithm to solve the multimodal planning network problem[J]. International Journal of Applied Metaheuristic Computing, 2020, 11 (4): 91- 113. |
33 | WANG W D , LIU K J , YANG C , et al. Cyber physical energy optimization control design for PHEVs based on enhanced firework algorithm[J]. IEEE Trans.on Vehicular Technology, 2021, 70 (1): 282- 291. |
34 | LUO H , HE C , ZHOU J N , et al. Rolling bearing sub-health recognition via extreme learning machine based on deep belief network optimized by improved fireworks[J]. IEEE Access, 2021, 9, 42013- 42026. |
[1] | 刘子昌, 白永生, 李思雨, 贾希胜. 基于小波时频图与Swin Transformer的柴油机故障诊断方法[J]. 系统工程与电子技术, 2023, 45(9): 2986-2998. |
[2] | 高升, 马广富, 郭延宁. 基于自适应未知输入观测器的多故障快速重构[J]. 系统工程与电子技术, 2022, 44(7): 2364-2373. |
[3] | 侯召国, 王华伟, 周良, 付强. 基于改进深度残差网络的旋转机械故障诊断[J]. 系统工程与电子技术, 2022, 44(6): 2051-2059. |
[4] | 杨占刚, 徐海义, 成博源, 石旭东. 基于FWA-DBN的航空发电机偏心故障诊断[J]. 系统工程与电子技术, 2022, 44(5): 1757-1764. |
[5] | 王占领, 庞晨, 殷加鹏, 李永祯, 王雪松. 基于极化状态配置的宽带相控阵极化控制方法[J]. 系统工程与电子技术, 2022, 44(3): 795-801. |
[6] | 谢家豪, 黄树彩, 韦道知, 张曌宇, 王文豪. 基于PEV准则的不确定混合多传感器联盟求解[J]. 系统工程与电子技术, 2022, 44(3): 819-826. |
[7] | 邢文革, 周传睿, 周程. 相控阵雷达探通一体化关键技术研究[J]. 系统工程与电子技术, 2022, 44(10): 3053-3058. |
[8] | 蒋伟, 盛文, 祁炜, 刘诗华. 大型相控阵雷达T/R组件维修决策问题综述[J]. 系统工程与电子技术, 2022, 44(1): 127-138. |
[9] | 刘星, 王文双, 赵建印, 朱敏. 自适应在线增量ELM的故障诊断模型研究[J]. 系统工程与电子技术, 2021, 43(9): 2678-2687. |
[10] | 李睿峰, 许爱强, 孙伟超, 王树友. 基于元学习的航空电子设备特征选择算法推荐方法[J]. 系统工程与电子技术, 2021, 43(7): 2011-2020. |
[11] | 陈洪转, 赵爱佳, 李腾蛟, 蔡匆聪, 程硕, 徐春丽. 基于故障树的复杂装备模糊贝叶斯网络推理故障诊断[J]. 系统工程与电子技术, 2021, 43(5): 1248-1261. |
[12] | 王力, 刘子奇. WPA-IGA-BP神经网络的模拟电路故障诊断[J]. 系统工程与电子技术, 2021, 43(4): 1133-1143. |
[13] | 戴金玲, 许爱强. 基于动态软聚类的航空电子部件LMKELM诊断模型[J]. 系统工程与电子技术, 2021, 43(3): 637-646. |
[14] | 刘傲, 周正, 李双明. 基于优化序列提取的相控阵雷达识别方法[J]. 系统工程与电子技术, 2021, 43(3): 656-665. |
[15] | 李纪三, 蔡文彬, 耿利祥, 刘溶, 任渊. 旋转相控阵雷达变数据率目标跟踪算法[J]. 系统工程与电子技术, 2021, 43(3): 676-683. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||