15 |
PATEL M, WANG X Y, MAO S W. Data augmentation with conditional GAN for automatic modulation classification[C]//Proc. of the 2nd ACM Workshop on Wireless Security and Machine Learning, 2020.
|
16 |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[C]//Proc. of the Conference and Workshop on Neural Information Processing Systems, 2014: 2672-2680.
|
17 |
BENDALE A, BOULT T. Towards open-set deep networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1563-1572.
|
18 |
GE Z Y, DEMYANOV S, CHEN Z T, et al. Generative openmax for multi-class open set classification[C]//Proc. of the British Machine Vision Conference, 2017.
|
19 |
NEAL L, OLSON M, FERN X, et al. Open-set learning with counterfactual images[C]//Proc. of the European Conference on Computer Vision, 2018.
|
20 |
RUDD E , JAIN L P , SCHEIRER W J , et al. The extreme va-lue machine[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2018, 40 (3): 762- 768.
|
21 |
LUCIC M, KURACH K, MICHALSKI M, et al. Are GANs created equal? A large-scale study[C]//Proc. of the Conference and Workshop on Neural Information Processing Systems, 2018.
|
22 |
TANG B , TU Y , ZHANG Z Y , et al. Digital signal modulation classification with data augmentation using generative adversarial nets in cognitive radio networks[J]. IEEE Access, 2018, 6, 15713- 15722.
|
23 |
YOSHIHASHI R, SHAO W, KAWAKAMI R, et al. Classification-reconstruction learning for open-set recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2019.
|
1 |
郝云飞, 刘章孟, 郭福成, 等. 基于生成对抗网络的信号调制方式的开集识别[J]. 系统工程与电子技术, 2019, 41 (11): 2619- 2624.
|
|
HAO Y F , LIU Z M , GUO F C , et al. Open-set recognition of signal modulation based on generative adversarial networks[J]. Systems Engineering and Electronics, 2019, 41 (11): 2619- 2624.
|
2 |
HAN Y S , WU T Y , CHEN P N , et al. A low-complexity maximum-likelihood decoder for tail-biting convolutional codes[J]. IEEE Trans.on Communications, 2018, 66 (5): 1859- 1870.
doi: 10.1109/TCOMM.2018.2790935
|
3 |
CHO B J , LEE J M , PARK H M . A beam-forming algorithm based on maximum likelihood of a complex Gaussian distribution with time-varying variances for robust speech recognition[J]. IEEE Signal Processing Letters, 2019, 26 (9): 1398- 1402.
doi: 10.1109/LSP.2019.2932848
|
4 |
胡国兵, 吴珊珊, 杨忠, 等. LFM/BPSK混合调制信号盲处理结果可信性评估: 一种简化的似然比算法[J]. 电子学报, 2019, 47 (9): 1891- 1897.
doi: 10.3969/j.issn.0372-2112.2019.09.011
|
|
HU G B , WU S S , YANG Z , et al. Credibility evaluation of blind processing results of LFM/BPSK mixed modulation signals: a simplified likelihood ratio algorithm[J]. Acta Electronica Sinica, 2019, 47 (9): 1891- 1897.
doi: 10.3969/j.issn.0372-2112.2019.09.011
|
5 |
ABDELBAR M , TRANTER W H , BOSE T . Cooperative cumulants-based modulation classification in distributed networks[J]. IEEE Trans.on Cognitive Communications and Networking, 2018, 4 (3): 446- 461.
doi: 10.1109/TCCN.2018.2824326
|
6 |
李红光, 郭英, 眭萍, 等. 基于时频能量谱纹理特征的跳频调制方式识别[J]. 通信学报, 2019, 40 (10): 20- 29.
|
|
LI H G , GUO Y , SUI P , et al. Recognition of frequency hopping modulation based on texture features of time-frequency energy spectrum[J]. Journal of Communications, 2019, 40 (10): 20- 29.
|
7 |
张天骐, 范聪聪, 葛宛营, 等. 基于ICA和特征提取的MIMO信号调制识别算法[J]. 电子与信息学报, 2020, 42 (9): 2208- 2215.
|
|
ZHANG T Q , FAN C C , GE W Y , et al. Modulation recognition algorithm of MIMO signal based on ICA and feature extraction[J]. Journal of Electronics and Information, 2020, 42 (9): 2208- 2215.
|
8 |
RAJENDRAN S , MEERT W , GIUSTINIANO D , et al. Deep learning models for wireless signal classification with distributed low-cost spectrum sensors[J]. IEEE Trans.on Cognitive Communications and Networking, 2018, 4 (3): 433- 445.
doi: 10.1109/TCCN.2018.2835460
|
9 |
O'SHEA T J, CORGAN J, CLANCY T C, et al. Convolutional radio modulation recognition networks[C]//Proc. of the International Conference on Engineering Applications of Neural Networks, 2016: 213-226.
|
10 |
张思成, 林云, 涂涯, 等. 基于轻量级深度神经网络的电磁信号调制识别技术[J]. 通信学报, 2020, 41 (11): 12- 21.
|
|
ZHANG S C , LIN Y , TU Y , et al. Electromagnetic signal modulation recognition technology based on lightweight deep neural network[J]. Journal of Communications, 2020, 41 (11): 12- 21.
|
11 |
安泽亮, 张天骐, 马宝泽, 等. 基于一维CNN的多入多出OSTBC信号协作调制识别[J]. 通信学报, 2021, 42 (7): 84- 94.
|
|
AN Z L , ZHANG T Q , MA B Z , et al. Cooperative modulation recognition of multiple-input multiple-output OSTBC signal based on one-dimensional CNN[J]. Journal of Communications, 2021, 42 (7): 84- 94.
|
12 |
肖易寒, 王亮, 郭玉霞. 基于去噪卷积神经网络的雷达信号调制类型识别[J]. 电子与信息学报, 2021, 43 (8): 2300- 2307.
|
|
XIAO Y H , WANG L , GUO Y X . Modulation type recognition of radar signal based on denoising convolutional neural network[J]. Journal of Electronics and Information, 2021, 43 (8): 2300- 2307.
|
13 |
O'SHEA T J , ROY T , CLANCY T C . Over-the-air deep learning based radio signal classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12 (1): 168- 179.
|
14 |
LI M X, LIU G Y, LI S T, et al. Radio classify generative adversarial networks: a semi-supervised method for modulation recognition[C]//Proc. of the IEEE 18th International Confe-rence on Communication Technology, 2018: 669-672.
|