1 |
陈凤东, 洪炳镕. 基于特征地图的移动机器人全局定位与自主泊位方法[J]. 电子学报, 2010, 38 (6): 1256- 1261.
|
|
CHEN F D , HONG B R . A global localization and self-docking method for mobile robot based on feature map[J]. Acta Electronica Sinica, 2010, 38 (6): 1256- 1261.
|
2 |
王晓龙, 刘海颖, 王景琪. 基于分层SLAM的空地多智能体协同导航[J]. 系统工程与电子技术, 2020, 42 (1): 166- 171.
|
|
WANG X L , LIU H Y , WANG J Q . Collaborative navigation of air-ground multi-agent based on hierarchical SLAM[J]. Systems Engineering and Electronics, 2020, 42 (1): 166- 171.
|
3 |
陈宝华, 邓磊, 陈志祥, 等. 基于即时稠密三维重构的无人机视觉定位[J]. 电子学报, 2017, 45 (6): 1294- 1300.
doi: 10.3969/j.issn.0372-2112.2017.06.003
|
|
CHEN B H , DENG L , CHEN Z X , et al. Instant dense 3D reconstruction-based UAV vision localization[J]. Acta Electronica Sinica, 2017, 45 (6): 1294- 1300.
doi: 10.3969/j.issn.0372-2112.2017.06.003
|
4 |
王通典, 刘洁瑜, 吴宗收, 等. 基于多尺度光流融合特征点视觉-惯性SLAM方法[J]. 系统工程与电子技术, 2022, 44 (3): 977- 985.
|
|
WANG T D , LIU J Y , WU Z S , et al. Visual-inertial SLAM method based on multi-scale optical flow fusion feature point[J]. Systems Engineering and Electronics, 2022, 44 (3): 977- 985.
|
5 |
GUI J J , GU D B , WANG S , et al. A review of visual inertial odometry from filtering and optimisation perspectives[J]. Advanced Robotics, 2015, 29 (20): 1289- 1301.
doi: 10.1080/01691864.2015.1057616
|
6 |
ZUO X X, XIE X J, LIU Y, et al. Robust visual SLAM with point and line features[C]//Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2017: 1775-1782.
|
7 |
HE Y J , ZHAO J , GUO Y , et al. PL-VIO: tightly coupled monocular visual-inertial odometry using point and line features[J]. Sensors, 2018, 18 (4): 1-25, 1159.
doi: 10.1109/JSEN.2017.2782543
|
8 |
赵良玉, 金瑞, 朱叶青, 等. 基于点线特征融合的双目惯性SLAM算法[J]. 航空学报, 2021, 42 (12): 325117.
|
|
ZHAO L Y , JIN R , ZHU Y Q , et al. Stereo visual-inertial SLAM with point and line features[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42 (12): 325117.
|
9 |
LEE G H, FRAUNDORFER F, POLLEFEYS M. MAV visual SLAM with plane constraint[C]//Proc. of the IEEE International Conference on Robotics and Automation, 2011: 3139-3144.
|
10 |
李海丰, 胡遵河, 陈新伟. PLP-SLAM: 基于点、线、面特征融合的视觉SLAM方法[J]. 机器人, 2017, 39 (2): 214- 220.
|
|
LI H F , HU Z H , CHEN X W . PLP-SLAM: a visual SLAM method based on point-line-plane feature fusion[J]. Robot, 2017, 39 (2): 214- 220.
|
11 |
孙沁璇, 苑晶, 张雪波, 等. PLVO: 基于平面和直线融合的RGB-D视觉里程计[J]. 自动化学报, 2023, 49 (10): 1001- 1013.
|
|
SUN Q X , YUAN J , ZHANG X B , et al. PLVO: plane-line-based RGB-D visual odometry[J]. Acta Automatica Sinica, 2023, 49 (10): 1001- 1013.
|
12 |
CAMPOSECO F, POLLEFEYS M. Using vanishing points to improve visual-inertial odometry[C]//Proc. of the IEEE International Conference on Robotics and Automation, 2015: 5219-5225.
|
13 |
KIM P, COLTIN B. Low-drift visual odometry in structured environments by decoupling rotational and translational motion[C]// Proc. of the IEEE International Conference on Robotics and Automation, 2018: 7247-7253.
|
14 |
GUO R , PENG K , ZHOU D , et al. Robust visual compass using hybrid features for indoor environments[J]. Electronics, 2019, 8 (2): 220.
doi: 10.3390/electronics8020220
|
15 |
KNEIP L, WEISS S, SIEGWART R. Deterministic initialization of metric state estimation filters for loosely-coupled mono-cular vision-inertial systems[C]//Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011: 2235-2241.
|
16 |
WEISS S, SIEGWART R. Real-time metric state estimation for modular vision-inertial systems[C]//Proc. of the IEEE International Conference on Robotics and Automation, 2011: 4531-4537.
|
17 |
BLOESCH M , BURRI M , OMARI S , et al. Iterated extended Kalman filter based visual-inertial odometry using direct photometric feedback[J]. The International Journal of Robotics Research, 2017, 36 (10): 1053- 1072.
doi: 10.1177/0278364917728574
|
18 |
LEUTENEGGER S , LYNEN S , BOSSE M , et al. Keyframe-based visual-inertial odometry using nonlinear optimization[J]. The International Journal of Robotics Research, 2015, 34 (3): 314- 334.
|
19 |
LI M , MOURIKIS A I . High-precision, consistent EKF-based visual-inertial odometry[J]. The International Journal of Robotics Research, 2013, 32 (6): 690- 711.
|
20 |
BLOESCH M , BURRI M , OMARI S , et al. Iterated extended Kalman filter based visual-inertial odometry using direct photometric feedback[J]. The International Journal of Robotics Research, 2017, 36 (10): 1053- 1072.
|
21 |
LEUTENEGGER S , LYNEN S , BOSSE M , et al. Keyframe-based visual-inertial odometry using nonlinear optimization[J]. The International Journal of Robotics Research, 2015, 34 (3): 314- 334.
|
22 |
CAMPOS C , ELVIRA R , RODRÍGUEZ J J G , et al. ORB-SLAM3: an accurate open-source library for visual, visual-inertial, and multimap SLAM[J]. IEEE Trans.on Robotics, 2021, 37 (6): 1874- 1890.
|
23 |
FORSTER C , CARLONE L , DELLAERT F , et al. On-Manifold preintegration for real-time visual-inertial odometry[J]. IEEE Trans.on Robotics, 2017, 33 (1): 1- 21.
|
24 |
LU X H, J Y Y, LI H, et al. 2-Line exhaustive searching for real-time vanishing point estimation in Manhattan world[C]// Proc. of the IEEE Winter Conference on Applications of Computer Vision, 2017: 345-353.
|
25 |
BAZIN J C , DEMONCEAUX C , VASSEUR P , et al. Rotation estimation and vanishing point extraction by omnidirectional vision in urban environment[J]. The International Journal of Robotics Research, 2012, 31 (1): 63- 81.
|
26 |
DENIS P, ELDER J H, ESTRADA F J. Efficient edge based methods for estimating Manhattan frames in urban imagery[C]//Proc. of the European Conference on Computer Vision, 2008: 97-210.
|
27 |
BAZIN J C, POLLEFEYS M. 3-line RANSAC for orthogonal vanishing point detection[C]//Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012: 4282-4287.
|
28 |
MIRZAEI F M, ROUMELIOTIS S I. Optimal estimation of vanishing points in a manhattan world[C]// Proc. of the IEEE International Conference on Computer Vision, 2011: 2454-2461.
|
29 |
WILDENAUER H, HANBURY A. Robust camera self-calibration from monocular images of Manhattan worlds[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2012: 2831-2838.
|
30 |
TRETYAK E, BARINOVA O, KOHLI P, et al. Geometric image parsing in man-made environments[C]//Proc. of the International Journal of Computer Vision, 2012, 97(3): 305-321.
|
31 |
ZHOU H Z , ZOU D P , PEI L , et al. StructSLAM: visual SLAM with building structure lines[J]. IEEE Trans.on Vehi-cular Technology, 2015, 64 (4): 1364- 1375.
|
32 |
ZOU D P , WU Y X , PEI L , et al. StructVIO: visual-inertial odometry with structural regularity of man-made environments[J]. IEEE Trans.on Robotics, 2019, 35 (4): 999- 1013.
|
33 |
GOMEZ-OJEDA R , MORENO F A , ZUNIGA-NOEL D , et al. PL-SLAM: a stereo SLAM system through the combination of points and line segments[J]. IEEE Trans.on Robotics, 2019, 35 (3): 734- 746.
|
34 |
LI H A, YAO J, BAZIN J, et al. A monocular SLAM system leveraging structural regularity in Manhattan world[C]//Proc. of the IEEE International Conference on Robotics and Automation, 2018: 2518-2525.
|
35 |
KIM P, COLTIN B. Low-drift visual odometry in structured environments by decoupling rotational and translational motion[C]// Proc. of the IEEE International Conference on Robotics and Automation, 2018: 7247-7253.
|
36 |
LUCAS B, KANADE T. An iterative image registration technique with an application to stereo vision[C]//Proc. of the International Joint Conference on Artificial Intelligence, 1981: 674-679.
|
37 |
AKINLAR C , TOPAL C . EDLINES: a real-time line segment detector with a false detection control[J]. Pattern Recognition Letters, 2011, 32 (13): 1633- 1642.
|
38 |
QIN T , LI P , SHEN S J . VINS-Mono: a robust and versatile monocular visual-inertial state estimator[J]. IEEE Trans.on Robotics, 2018, 34 (4): 1004- 1020.
|
39 |
BARTOLI A , STURM P . Structure-from-motion using lines: representation, triangulation, and bundle adjustment[J]. Computer Vision and Image Understanding, 2005, 100 (3): 416- 441.
|
40 |
BURRI M , NIKOLIC J , GOHL P , et al. The EuRoC micro aerial vehicle datasets[J]. International Journal of Robotics Research, 2016, 35 (10): 1157- 1163.
|
41 |
GENEVA P, ECKENHOFF K, LEE W, et al. Openvins: a research platform for visual-inertial estimation[C]//Proc. of the IEEE International Conference on Robotics and Automation, 2020: 4666-4672.
|