系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (10): 3116-3121.doi: 10.12305/j.issn.1001-506X.2023.10.15

• 传感器与信号处理 • 上一篇    

逆合成孔径成像雷达隐身目标零样本识别

周春花1,2,3,*, 魏维伟1,2,3, 张学成4, 郑鑫5, 程冕之1   

  1. 1. 上海无线电设备研究所, 上海 201109
    2. 上海目标识别与环境感知工程技术研究中心, 上海 201109
    3. 中国航天科技集团交通感知雷达技术研发中心, 上海 201109
    4. 陆军装备部驻上海地区第三军事代表室, 上海 200031
    5. 上海航天技术研究院, 上海 201109
  • 收稿日期:2021-10-26 出版日期:2023-09-25 发布日期:2023-10-11
  • 通讯作者: 周春花
  • 作者简介:周春花(1980—), 女, 研究员, 硕士, 主要研究方向为雷达成像、杂波抑制、动目标检测与跟踪
    魏维伟(1977—), 男, 研究员, 硕士, 主要研究方向为雷达探测与识别
    张学成(1976—), 男, 高级工程师, 博士, 主要研究方向为系统总体技术
    郑鑫(1980—), 男, 高级工程师, 硕士, 主要研究方向为飞行器总体和雷达信号处理
    程冕之(1980—), 男, 高级工程师, 主要研究方向为项目管理研究
  • 基金资助:
    上海市自然科学基金(19ZR1454000)

Zero-shot identification for stealth target by inverse synthetic aperture imaging radar

Chunhua ZHOU1,2,3,*, Weiwei WEI1,2,3, Xuecheng ZHANG4, Xin ZHENG5, Mianzhi CHENG1   

  1. 1. Shanghai Radio Equipment Research Institute, Shanghai 201109, China
    2. Shanghai Engineering Research Center of Target Identification and Environment Perception, Shanghai 201109, China
    3. Traffic Perception Radar Technology Research & Development Center of China Aerospace Science and Technology Corporation, Shanghai 201109, China
    4. The 3rd Military Representative Office of the Ministry of Army Equipment, Shanghai 200031, China
    5. Shanghai Academy of Spaceflight Technology, Shanghai 201109, China
  • Received:2021-10-26 Online:2023-09-25 Published:2023-10-11
  • Contact: Chunhua ZHOU

摘要:

针对现有算法不具备识别出未在训练过程中出现的新类别目标的能力问题,提出了针对逆合成孔径成像雷达(inverse synthetic aperture imaging radar,ISAR)隐身目标零样本学习识别方法。首先,基于飞行类动态目标三维网络化物理模型,使用FEKO电磁场仿真软件进行编程,实现ISAR可见的源目标图像数据生成;然后,在此基础上形成不同飞机类目标细节属性的文本语义特征表达。所提出的新类型算法网络模型采用两个变分自编码器,分别进行了图像和语义的特征生成,从而让网络学习到模态不变的特征表达。使用可见类别数据训练网络,并获得能够凭借语义信息生成图像特征的模型。训练识别采用该学习模型不可见的未知新类别目标, 从不可见未知的新类别文本语义生成不可见未知的新目标图像特征信息,支撑了不可见未知的新目标识别, 统计未知的新类别识别正确率为75%。

关键词: 逆合成孔径成像雷达, 零样本学习, 隐身目标

Abstract:

For the zero-shot learning and recognition problem of stealth targets for inverse synthetic aperture imaging radar (ISAR), the existed algorithms cannot recognize the new category of targets that have not appeared in the training process. A target learning and recognition method with zero-shot learning (ZSL) is proposed for solving the problem above. Firstly, based on three dimensional grid physical model of the aircraft-class dynamic target, the FEKO electromagnetic field simulation software programming is used to realize the ISAR-visible source target image data generation. Secondly, on this basis, the text semantic feature expression of detail attributes for different aircraft-class targets is formed. In the novel-type proposed algorithm's network model, two variation autoencoders are used to generate image and semantic features respectively, so that the network can learn the modal's invariant feature expression. The network is trained with visible category data to obtain the model that can generate image features based on semantic information. The training recognition process adopts the targets of the new category which are unknown and invisible for the proposed learning model. The unknown and invisible image feature information of the new target is generated from the invisible and unknown text semantic of the new category, which supports the recognition for the new targets which are unknown and invisible. The accuracy rate of the recognition for the new category targets is up to 75% according to the relevant statistic result, which means an important military and strategic significance.

Key words: inverse synthetic aperture imaging radar (ISAR), zero-shot learning (ZSL), stealth target

中图分类号: