系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (10): 3041-3048.doi: 10.12305/j.issn.1001-506X.2023.10.06

• 电子技术 • 上一篇    

基于CycleGAN的月表图像数据增强方法

宋婷1,2, 兀泽朝3,4, 高艾5,*, 袁建平1   

  1. 1. 西北工业大学航天学院, 陕西 西安 710072
    2. 上海航天控制技术研究所, 上海 201109
    3. 北京机电工程研究所, 北京 100074
    4. 复杂系统控制与智能协同技术重点实验室, 北京 100074
    5. 北京理工大学宇航学院, 北京 100081
  • 收稿日期:2022-07-13 出版日期:2023-09-25 发布日期:2023-10-11
  • 通讯作者: 高艾
  • 作者简介:宋婷(1984—), 女, 高级工程师, 博士研究生, 主要研究方向为航天器规划与控制
    兀泽朝(1997—), 男, 助理工程师, 硕士, 主要研究方向为飞行器自主导航、制导与控制
    高艾(1984—), 女, 教授, 博士, 主要研究方向为航天器自主导航与制导控制
    袁建平(1957—), 男, 教授, 博士, 主要研究方向为航天器动力学
  • 基金资助:
    国家自然科学基金(11872110)

CycleGAN-based data enhancement method for lunar surface images

Ting SONG1,2, Zezhao WU3,4, Ai GAO5,*, Jianping YUAN1   

  1. 1. School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China
    2. Shanghai Aerospace Control Technology Institute, Shanghai 201109, China
    3. Institute of Mechanical and Electrical Engineering, Beijing 100074, China
    4. Science and Technology on Complex System Control and Intelligent Agent Cooperation Laboratory, Beijing 100074, China
    5. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
  • Received:2022-07-13 Online:2023-09-25 Published:2023-10-11
  • Contact: Ai GAO

摘要:

针对月球表面先验图像信息获取困难的问题, 提出一种基于对抗神经网络的月表先验图像数据增强方法。在获取少量月表图像及障碍背景分割图的基础上, 构建基于对抗神经网络的月表图像数据增强架构, 利用新的障碍背景分割图匹配生成月表图像, 扩充月表先验图像数据, 可用于月球探测中障碍检测算法设计验证。仿真结果证明了所提方法生成的月表图像接近真实拍摄图像, 且通过数据增强图像数据, 使障碍检测结果获得明显提升, 证明了方法的有效性。

关键词: 月球探测, 数据增强, 深度学习, 对抗神经网络

Abstract:

In this paper, a method of lunar surface priori image data enhancement based on adversarial neural network is proposed to address the problem of difficulty in acquiring a priori image information on the lunar surface. Based on the acquisition of a small amount of lunar surface images and obstacle background segmentation maps, the lunar surface image data enhancement architecture based on the adversarial neural network is constructed, and the new obstacle background segmentation maps are used to match the lunar surface images and expand the lunar surface priori image data, which can be used for the design and verification of obstacle detection algorithms in lunar exploration. Simulation results prove that the lunar surface images generated by the proposed method are close to the real captured images, and the image data is enhanced by the data to obtain obvious improvement of the obstacle detection results, which proves the effectiveness of the proposed method.

Key words: lunar exploration, data enhancement, deep learning, adversarial neural networks

中图分类号: