1 |
BRENNAN L E , REED I S . Theory of adaptive radar[J]. IEEE Trans.on Aerospace and Electronic Systems, 1973, 9 (2): 234- 252.
|
2 |
WARD J. Space-time adaptive processing for airborne radar[R]. Lexington: MIT Lincoln Laboratory, 1994.
|
3 |
王永良, 彭应宁. 空时自适应信号处理[M]. 北京: 清华大学出版社, 2000.
|
|
WANG Y L , PENG Y N . Space-time adaptive processing[M]. Beijing: Tsinghua University Press, 2000.
|
4 |
GOLDSTEIN J S , REED I S . Reduced-rank adaptive filtering[J]. IEEE Trans.on Signal Processing, 1997, 45 (2): 493- 496.
|
5 |
MELVIN W L , DAVIS M . Adaptive cancellation method for geo-metry-induced non-stationary bistatic clutter environments[J]. IEEE Trans.on Aerospace and Electronic Systems, 2007, 43 (2): 651- 672.
doi: 10.1109/TAES.2007.4285360
|
6 |
WICKS M C, MELVIN W L, CHEN P. An efficient architecture for nonhomogeneity detection in space-time adaptive processing airborne early warning radar[C]//Proc. of the IEEE Radar Conference, 1997: 295-299.
|
7 |
MELVIN W L , SHOWMAN G A . An approach to knowledge-aided covariance estimation[J]. IEEE Trans.on Aerospace and Electronic Systems, 2006, 42 (3): 1021- 1042.
doi: 10.1109/TAES.2006.248216
|
8 |
SARKAR T K , WANG W , PARK W S , et al. A deterministic least-squares approach to space-time adaptive processing[J]. IEEE Trans.on Antennas and Propagation, 2001, 49 (1): 91- 103.
doi: 10.1109/8.910535
|
9 |
阳召成, 黎湘. 稀疏空时自适应处理[M]. 北京: 科学出版社, 2017.
|
|
YANG Z C , LI X . Sparsity-aware space-time adaptive processing[M]. Beijing: Science Press, 2017.
|
10 |
SUN K , MENG H D , WANG Y L , et al. Direct data domain STAP using sparse representation of clutter spectrum[J]. Signal Processing, 2011, 91 (9): 2222- 2236.
doi: 10.1016/j.sigpro.2011.04.006
|
11 |
WANG Z T , XIE W C , DUAN K Q , et al. Clutter suppression algorithm based on fast converging sparse Bayesian learning for airborne radar[J]. Signal Processing, 2017, 130, 159- 168.
doi: 10.1016/j.sigpro.2016.06.023
|
12 |
BAI L D, ROY S, RANGASWAMY M. Compressive radar clutter subspace estimation using dictionary learning[C]//Proc. of IEEE Radar Conference, 2013.
|
13 |
BAI G T , TAO R , ZHAO J , et al. Parameter-searched OMP method for eliminating basis mismatch in space-time spectrum estimation[J]. Signal Processing, 2017, 138, 11- 15.
doi: 10.1016/j.sigpro.2017.03.003
|
14 |
LI Z H , ZHANG Y X , HE X Y , et al. Low-complexity off-grid STAP algorithm based on local search clutter subspace estimation[J]. IEEE Geoscience Remote Sensing Letters, 2018, 15 (12): 1862- 1866.
doi: 10.1109/LGRS.2018.2865536
|
15 |
YUAN H D , XU H , DUANK Q , et al. Sparse Bayesian learning-based space-time adaptive processing with off-grid self-calibration for airborne radar[J]. IEEE Access, 2018, 6, 47296- 47307.
doi: 10.1109/ACCESS.2018.2866497
|
16 |
DUAN K Q , LIU W J , DUAN G Q , et al. Off-grid effects mitigation exploiting knowledge of the clutter ridge for sparse recovery STAP[J]. IET Radar Sonar and Navigation, 2018, 12 (5): 557- 564.
doi: 10.1049/iet-rsn.2017.0425
|
17 |
MA Z Q , LIU Y M , MENG H D , et al. Sparse recovery-based space-time adaptive processing with array error self-calibration[J]. Electronic Letters, 2014, 50 (13): 952- 954.
doi: 10.1049/el.2014.0315
|
18 |
YANG Z C , DE LAMARE R C , LIU W J . Sparsity-based STAP using alternating direction method with gain/phase errors[J]. IEEE Trans.on Aerospace and Electronic Systems, 2017, 53 (6): 2756- 2768.
doi: 10.1109/TAES.2017.2714938
|
19 |
TIPPING M . Sparse Bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001, 1, 211- 244.
|
20 |
WIPF D P , RAO B D . An empirical Bayesian strategy for solving the simultaneous sparse approximation problem[J]. IEEE Trans.on Signal Processing, 2007, 55 (7): 3704- 3716.
doi: 10.1109/TSP.2007.894265
|
21 |
CHEN P , CAO Z M , CHEN Z M , et al. Off-grid DOA estimation using sparse Bayesian learning in MIMO radar with unknown mutual coupling[J]. IEEE Trans.on Signal Processing, 2019, 67 (1): 208- 220.
doi: 10.1109/TSP.2018.2881663
|
22 |
CHEN Z M , MA W X , CHEN P , et al. A robust sparse Bayesian learning-based DOA estimation method with phase calibration[J]. IEEE Access, 2020, 8, 141511- 141522.
doi: 10.1109/ACCESS.2020.3013610
|
23 |
WANG Q S , YU H , LI J , et al. Sparse Bayesian learning using generalized double pareto prior for DOA estimation[J]. IEEE Signal Processing Letters, 2021, 28, 1744- 1748.
doi: 10.1109/LSP.2021.3104503
|
24 |
GIRI R , RAO B D . Type Ⅰ and type Ⅱ Bayesian methods for sparse signal recovery using scale mixtures[J]. IEEE Trans.on Signal Processing, 2016, 64 (13): 3418- 3428.
doi: 10.1109/TSP.2016.2546231
|
25 |
LIU Z M , HUANG Z T , ZHOU Y Y . An efficient maximum likelihood method for direction-of-arrival estimation via sparse Bayesian learning[J]. IEEE Trans.on Wireless Communication, 2012, 11 (10): 1- 11.
doi: 10.1109/TWC.2012.090312.111912
|
26 |
HAN S D , FAN C Y , HUANG X T . A novel STAP based on spectrum-aided reduced-dimension clutter sparse recovery[J]. IEEE Geoscience Remote Sensing Letters, 2017, 14 (2): 213- 217.
doi: 10.1109/LGRS.2016.2635104
|