| 1 | BRENNAN L E ,  REED I S .  Theory of adaptive radar[J]. IEEE Trans.on Aerospace and Electronic Systems, 1973, 9 (2): 234- 252. | 
																													
																						| 2 | WARD J. Space-time adaptive processing for airborne radar[R]. Lexington: MIT Lincoln Laboratory, 1994. | 
																													
																						| 3 | 王永良, 彭应宁.  空时自适应信号处理[M]. 北京: 清华大学出版社, 2000. | 
																													
																						|  | WANG Y L ,  PENG Y N .  Space-time adaptive processing[M]. Beijing: Tsinghua University Press, 2000. | 
																													
																						| 4 | GOLDSTEIN J S ,  REED I S .  Reduced-rank adaptive filtering[J]. IEEE Trans.on Signal Processing, 1997, 45 (2): 493- 496. | 
																													
																						| 5 | MELVIN W L ,  DAVIS M .  Adaptive cancellation method for geo-metry-induced non-stationary bistatic clutter environments[J]. IEEE Trans.on Aerospace and Electronic Systems, 2007, 43 (2): 651- 672. doi: 10.1109/TAES.2007.4285360
 | 
																													
																						| 6 | WICKS M C, MELVIN W L, CHEN P. An efficient architecture for nonhomogeneity detection in space-time adaptive processing airborne early warning radar[C]//Proc. of the IEEE Radar Conference, 1997: 295-299. | 
																													
																						| 7 | MELVIN W L ,  SHOWMAN G A .  An approach to knowledge-aided covariance estimation[J]. IEEE Trans.on Aerospace and Electronic Systems, 2006, 42 (3): 1021- 1042. doi: 10.1109/TAES.2006.248216
 | 
																													
																						| 8 | SARKAR T K ,  WANG W ,  PARK W S , et al.  A deterministic least-squares approach to space-time adaptive processing[J]. IEEE Trans.on Antennas and Propagation, 2001, 49 (1): 91- 103. doi: 10.1109/8.910535
 | 
																													
																						| 9 | 阳召成, 黎湘.  稀疏空时自适应处理[M]. 北京: 科学出版社, 2017. | 
																													
																						|  | YANG Z C ,  LI X .  Sparsity-aware space-time adaptive processing[M]. Beijing: Science Press, 2017. | 
																													
																						| 10 | SUN K ,  MENG H D ,  WANG Y L , et al.  Direct data domain STAP using sparse representation of clutter spectrum[J]. Signal Processing, 2011, 91 (9): 2222- 2236. doi: 10.1016/j.sigpro.2011.04.006
 | 
																													
																						| 11 | WANG Z T ,  XIE W C ,  DUAN K Q , et al.  Clutter suppression algorithm based on fast converging sparse Bayesian learning for airborne radar[J]. Signal Processing, 2017, 130, 159- 168. doi: 10.1016/j.sigpro.2016.06.023
 | 
																													
																						| 12 | BAI L D, ROY S, RANGASWAMY M. Compressive radar clutter subspace estimation using dictionary learning[C]//Proc. of IEEE Radar Conference, 2013. | 
																													
																						| 13 | BAI G T ,  TAO R ,  ZHAO J , et al.  Parameter-searched OMP method for eliminating basis mismatch in space-time spectrum estimation[J]. Signal Processing, 2017, 138, 11- 15. doi: 10.1016/j.sigpro.2017.03.003
 | 
																													
																						| 14 | LI Z H ,  ZHANG Y X ,  HE X Y , et al.  Low-complexity off-grid STAP algorithm based on local search clutter subspace estimation[J]. IEEE Geoscience Remote Sensing Letters, 2018, 15 (12): 1862- 1866. doi: 10.1109/LGRS.2018.2865536
 | 
																													
																						| 15 | YUAN H D ,  XU H ,  DUANK Q , et al.  Sparse Bayesian learning-based space-time adaptive processing with off-grid self-calibration for airborne radar[J]. IEEE Access, 2018, 6, 47296- 47307. doi: 10.1109/ACCESS.2018.2866497
 | 
																													
																						| 16 | DUAN K Q ,  LIU W J ,  DUAN G Q , et al.  Off-grid effects mitigation exploiting knowledge of the clutter ridge for sparse recovery STAP[J]. IET Radar Sonar and Navigation, 2018, 12 (5): 557- 564. doi: 10.1049/iet-rsn.2017.0425
 | 
																													
																						| 17 | MA Z Q ,  LIU Y M ,  MENG H D , et al.  Sparse recovery-based space-time adaptive processing with array error self-calibration[J]. Electronic Letters, 2014, 50 (13): 952- 954. doi: 10.1049/el.2014.0315
 | 
																													
																						| 18 | YANG Z C ,  DE LAMARE R C ,  LIU W J .  Sparsity-based STAP using alternating direction method with gain/phase errors[J]. IEEE Trans.on Aerospace and Electronic Systems, 2017, 53 (6): 2756- 2768. doi: 10.1109/TAES.2017.2714938
 | 
																													
																						| 19 | TIPPING M .  Sparse Bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001, 1, 211- 244. | 
																													
																						| 20 | WIPF D P ,  RAO B D .  An empirical Bayesian strategy for solving the simultaneous sparse approximation problem[J]. IEEE Trans.on Signal Processing, 2007, 55 (7): 3704- 3716. doi: 10.1109/TSP.2007.894265
 | 
																													
																						| 21 | CHEN P ,  CAO Z M ,  CHEN Z M , et al.  Off-grid DOA estimation using sparse Bayesian learning in MIMO radar with unknown mutual coupling[J]. IEEE Trans.on Signal Processing, 2019, 67 (1): 208- 220. doi: 10.1109/TSP.2018.2881663
 | 
																													
																						| 22 | CHEN Z M ,  MA W X ,  CHEN P , et al.  A robust sparse Bayesian learning-based DOA estimation method with phase calibration[J]. IEEE Access, 2020, 8, 141511- 141522. doi: 10.1109/ACCESS.2020.3013610
 | 
																													
																						| 23 | WANG Q S ,  YU H ,  LI J , et al.  Sparse Bayesian learning using generalized double pareto prior for DOA estimation[J]. IEEE Signal Processing Letters, 2021, 28, 1744- 1748. doi: 10.1109/LSP.2021.3104503
 | 
																													
																						| 24 | GIRI R ,  RAO B D .  Type Ⅰ and type Ⅱ Bayesian methods for sparse signal recovery using scale mixtures[J]. IEEE Trans.on Signal Processing, 2016, 64 (13): 3418- 3428. doi: 10.1109/TSP.2016.2546231
 | 
																													
																						| 25 | LIU Z M ,  HUANG Z T ,  ZHOU Y Y .  An efficient maximum likelihood method for direction-of-arrival estimation via sparse Bayesian learning[J]. IEEE Trans.on Wireless Communication, 2012, 11 (10): 1- 11. doi: 10.1109/TWC.2012.090312.111912
 | 
																													
																						| 26 | HAN S D ,  FAN C Y ,  HUANG X T .  A novel STAP based on spectrum-aided reduced-dimension clutter sparse recovery[J]. IEEE Geoscience Remote Sensing Letters, 2017, 14 (2): 213- 217. doi: 10.1109/LGRS.2016.2635104
 |