1 |
YUAN K , LING Q , YIN W T . On the convergence of decentralized gradient descent[J]. SIAM Journal on Optimization, 2016, 26 (3): 1835- 1854.
doi: 10.1137/130943170
|
2 |
DE LUIGI C , JAUFFRET C . Estimation and classification of FM signals using time frequency transforms[J]. IEEE Trans.on Aerospace and Electronic Systems, 2005, 41 (2): 421- 437.
doi: 10.1109/TAES.2005.1468738
|
3 |
WANG Y , GUI G , GACANIN H , et al. An efficient specific emitter identification method based on complex-valued neural networks and network compression[J]. IEEE Journal on Selected Areas in Communications, 2021, 39 (8): 2305- 2317.
doi: 10.1109/JSAC.2021.3087243
|
4 |
ZHANG Q , GUO Y , SONG Z Y . Dynamic curve fitting and BP neural network with feature extraction for mobile specific emitter identification[J]. IEEE Access, 2021, 9, 33897- 33910.
doi: 10.1109/ACCESS.2021.3060794
|
5 |
ZHA X , CHEN H , LI T Y , et al. Specific emitter identification based on complex fourier neural network[J]. IEEE Communications Letters, 2022, 23 (3): 592- 596.
|
6 |
WAN T , JI H , XIONG W N , et al. Deep learning-based specific emitter identification using integral bispectrum and the slice of ambiguity function[J]. Signal, Image and Video Processing, 2016, 2009- 2017.
|
7 |
QU L Z , LIU H , HUANG K J , et al. Specific emitter identification based on multi-domain feature fusion and integrated learning[J]. Symmetry, 2021, 13 (8): 1481.
doi: 10.3390/sym13081481
|
8 |
HOU K K , LI N . Specific emitter identification based on CNN[J]. Journal of Physics Conference Series, 2021, 1971 (1): 012014.
doi: 10.1088/1742-6596/1971/1/012014
|
9 |
张伟, 王沙飞, 林静然, 等. 基于孪生网络的电磁目标跨模式识别算法[J]. 电子学报, 2022, 50 (6): 1281- 1290.
|
|
ZHANG W , WANG S F , LIN J R , et al. Cross-modal recognition algorithm of electromagnetic targets via siamese network[J]. Acta Electronica Sinica, 2022, 50 (6): 1281- 1290.
|
10 |
蒋季宏, 方宇轩, 张伟, 等. 小样本情景下基于特征融合的辐射源个体识别[J]. 电子信息对抗技术, 2022, 37 (3): 20- 25.
|
|
JIANG J H , FANG Y X , ZHANG W , et al. Specific emitter identification based on feature fusion in few-shot scene[J]. Electronic Information Warfare Technology, 2022, 37 (3): 20- 25.
|
11 |
范广伟, 蔚保国, 晁磊, 等. 卫星导航电磁干扰识别分类器设计[J]. 系统工程与电子技术, 2014, 36 (2): 234- 238.
|
|
FAN G W , YU B G , CHAO L , et al. Design of interference recognition and classification filter of satellite navigation electromagnetic environment[J]. Systems Engineering and Electronics, 2014, 36 (2): 234- 238.
|
12 |
TANG X J, CHEN W G, ZHU W G. Radar emitter recognition method based on AdaBoost and decision tree[C]//Proc. of the 2nd International Conference on Automation, Mechanical Control and Computational Engineering, 2017: 341-345.
|
13 |
HUANG Y K , JIN W D , GE P , et al. Radar emitter signal identification based on multi-scale information entropy[J]. Journal of Electronics & Information Technology, 2019, 41 (5): 1081- 1091.
|
14 |
王磊, 张志勇, 胥辉旗, 等. 基于VMD分解和多域联合分布的雷达辐射源识别[J]. 系统工程与电子技术, 2023, 45 (8): 2479- 2488.
|
|
WANG L , ZHANG Z Y , XU H Q , et al. Radar emitter identification based on VMD and multi-domain distribution[J]. Systems Engineering and Electronics, 2023, 45 (8): 2479- 2488.
|
15 |
王枭, 何怡刚, 马恒瑞, 等. 面向电网辅助服务的虚拟储能电厂分布式优化控制方法[J]. 电力系统自动化, 2022, 46 (10): 181- 188.
|
|
WANG X , HE Y G , MA H R , et al. Distributed optimization control method of virtual energy storage plants for power grid ancillary services[J]. Automation of Electric Power Systems, 2022, 46 (10): 181- 188.
|
16 |
HUO X, LIU M X. A novel cryptography-based privacy-preserving decentralized optimization paradigm[C]//Proc. of the IEEE International Conference on Pervasive Services, 2021: 607-612.
|
17 |
STIPANOVIC D M, TOMLIN C J. Decentralized optimization, with application to multiple aircraft[C]//Proc. of the IEEE Conference on Decision and Control, 2002, 1: 1147-1155.
|
18 |
ZHAO H S, CANNY J. Sparse allreduce: efficient scalable communication for power-law data[EB/OL]. [2022-06-29]. http//arxiv.org/abs/1312.3020.
|
19 |
AWAN A A, CHU C H, SUBRAMONI H, et al. Optimized broadcast for deep learning workloads on dense-GPU infiniband clusters: MPI or NCCL?[C]//Proc. of the 25th European MPI Users'Group Meeting, 2018.
|
20 |
PATARASUK P, YUAN X. Bandwidth efficient all-reduce operation on tree topologies[C]//Proc. of the IEEE International Parallel & Distributed Processing Symposium, 2007.
|
21 |
PATARASUK P , YUAN X . Bandwidth optimal all-reduce algorithms for clusters of workstations[J]. Journal of Parallel & Distributed Computing, 2009, 69 (2): 117- 124.
|
22 |
SERGEEY A, DELBALSO M. Horovod: fast and easy distri-buted deep learning in TensorFlow[EB/OL]. [2022-06-29]. https://arxiv.org/abs/1802.05799.
|
23 |
YANG Q , LIU Y , CHENG Y , et al. Federated learning[J]. Synthesis Lectures on Artificial Intelligence and Machine Learn-ing, 2019, 13 (3): 1- 207.
|
24 |
BOYD S , PARIKH N , CHU E , et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations & Trends in Machine Learning, 2010, 3 (1): 128.
|
25 |
CHANG T H , HONG M , WANG X . Multi-agent distributed optimization via inexact consensus ADMM[J]. IEEE Trans. on Signal Processing, 2014, 63 (2): 482- 497.
|
26 |
李瑞泽, 张双辉, 刘永祥. 基于卷积ADMM网络的高效结构化稀疏ISAR成像方法[J]. 系统工程与电子技术, 2023, 45 (1): 56- 70.
|
|
LI R Z , ZHANG S H , LIU Y X . Computational efficient structural sparse ISAR imaging based on convolutional ADMM- net[J]. Systems Engineering and Electronics, 2023, 45 (1): 56- 70.
|
27 |
TUAN P V , KOO I . Distributed ADMM-based approach for total harvested power maximization in non-linear SWIPT system[J]. Wireless Networks, 2020, 26 (5): 1357- 1371.
|
28 |
XU T , WU W C . Accelerated ADMM-based fully distributed inverter-based volt/var control strategy for active distribution networks[J]. IEEE Trans. on Industrial Informatics, 2020, 16 (12): 7532- 7543.
|
29 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
30 |
TOLSTIKHIN I, HOULSBY N, KOLESNIKOV A, et al. MLP-mixer: an all-MLP architecture for vision[C]//Proc. of the NeurIPS, 2021.
|
31 |
VASWANI A , SHAZEER N , PARMAR N , et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30, 2243- 2251.
|