1 |
GYAGENDA N , HATILIMA J V , ROTH H , et al. A review of GNSS-independent UAV navigation techniques[J]. Robotics and Autonomous Systems, 2022, 152, 104069.
doi: 10.1016/j.robot.2022.104069
|
2 |
REZWAN S , CHOI W . Artificial intelligence approaches for UAV navigation: recent advances and future challenges[J]. IEEE Access, 2022, 10, 26320- 26339.
doi: 10.1109/ACCESS.2022.3157626
|
3 |
COUTURIER A , AKHLOUFI M A . A review on absolute vi-sual localization for UAV[J]. Robotics and Autonomous Systems, 2021, 135, 103666.
doi: 10.1016/j.robot.2020.103666
|
4 |
KAZEROUNI I A , FITZGERALD L , DOOLY G , et al. A survey of state-of-the-art on visual SLAM[J]. Expert Systems with Applications, 2022, 205, 117734.
doi: 10.1016/j.eswa.2022.117734
|
5 |
JIA G W , LI X Y , ZHANG D M , et al. Visual-SLAM classical framework and key techniques: a review[J]. Sensors, 2022, 22 (12): 4582.
doi: 10.3390/s22124582
|
6 |
SHAN M, WANG F, LIN F, et al. Google map aided visual navigation for UAVs in GPS-denied environment[C]//Proc. of the IEEE International Conference on Robotics and Biomimetics, 2015: 114-119.
|
7 |
COUTURIER A , AKHLOUFI M A . A review on absolute vi-sual localization for UAV[J]. Robotics and Autonomous Systems, 2021, 135, 103666.
doi: 10.1016/j.robot.2020.103666
|
8 |
AL SAID N , GORBACHEV Y , AVDEENKO A . An unmanned aerial vehicles navigation system on the basis of pattern recognition applications—review of implementation options and prospects for development[J]. Software: Practice and Experience, 2021, 51 (7): 1509- 1517.
doi: 10.1002/spe.2964
|
9 |
MUGHAL M H , KHOKHAR M J , SHAHZAD M . Assisting UAV localization via deep contextual image matching[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 2445- 2457.
doi: 10.1109/JSTARS.2021.3054832
|
10 |
MA J Y , JIANG X Y , FAN A X , et al. Image matching from handcrafted to deep features: a survey[J]. International Journal of Computer Vision, 2021, 129 (1): 23- 79.
doi: 10.1007/s11263-020-01359-2
|
11 |
CHEN L , ROTTENSTEINER F , HEIPKE C . Feature detection and description for image matching: from hand-crafted design to deep learning[J]. Geo-spatial Information Science, 2021, 24 (1): 58- 74.
doi: 10.1080/10095020.2020.1843376
|
12 |
陈世伟, 夏海, 杨小冈, 等. 基于风格迁移不变特征的SAR与光学图像配准算法[J]. 系统工程与电子技术, 2022, 44 (5): 1536- 1542.
|
|
CHEN S W , XIA H , YANG X G , et al. SAR and optical image registration algorithm based on style transfer invariable fea-tures[J]. Systems Engineering and Electronics, 2022, 44 (5): 1536- 1542.
|
13 |
YANG W , XU C , MEI L Y , et al. LPSO: multi-source image matching considering the description of local phase sharpness orientation[J]. IEEE Photonics Journal, 2022, 14 (1): 1- 9.
|
14 |
SARLIN P E, DETONE D, MALISIEWICZ T, et al. SuperGlue: learning feature matching with graph neural networks[C]// Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 4938-4947.
|
15 |
ROCCO I , CIMPOI M , ARANDJELOVIC R , et al. Ncnet: neighbourhood consensus networks for estimating image corres- pondences[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2020, 44 (2): 1020- 1034.
|
16 |
EFE U, INCE K G, ALATAN A. Dfm: a performance baseline for deep feature matching[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 4284-4293.
|
17 |
ONO Y, TRULLS E, FUA P, et al. LF-Net: learning local features from images[C]//Proc. of the 32nd International Conference on Neural Information Processing Systems, 2018: 6237-6247.
|
18 |
DUSMANU M, ROCCO I, PAJDLA T, et al. D2-net: a trainable CNN for joint description and detection of local features[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 8092-8101.
|
19 |
CHEN H K, LUO Z X, ZHANG J H, et al. Learning to match features with seeded graph matching network[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2021: 6301-6310.
|
20 |
REVAUD J, LEROY V, WEINZAEPFEL P, et al. PUMP: pyramidal and uniqueness matching priors for unsupervised learning of local descriptors[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 3926-3936.
|
21 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proc. of the 31st International Conferenceon Neural Information Processing Systems, 2017: 6000-6010.
|
22 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE/CVF Confe- rence on Computer Vision and Pattern Recognition, 2016: 770-778.
|
23 |
韩子硕, 王春平, 付强, 等. 基于超密集特征金字塔网络的SAR图像舰船检测[J]. 系统工程与电子技术, 2020, 42 (10): 2214- 2222.
|
|
HAN Z S , WANG C P , FU Q , et al. Ship detection in SAR images based on super dense feature pyramid networks[J]. Systems Engineering and Electronics, 2020, 42 (10): 2214- 2222.
|
24 |
KATHAROPOULOS A, VYAS A, PAPPAS N, et al. Transformers are RNNs: fast autoregressive transformers with linear attention[C]//Proc. of the International Conference on Machine Learning, 2020, 119: 5156-5165.
|
25 |
NIBALI A, HE Z, MORGAN S, et al. Numerical coordinate regression with convolutional neural networks[EB/OL]. [2022-09-06]. https://arxiv.org/abs/1801.07372v2.
|
26 |
LI Z Q, SNAVELY N. Megadepth: learning single-view depth prediction from internet photos[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 2041-2050.
|
27 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
|
28 |
FISCHLER M A , BOLLES R C . Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24 (6): 381- 395.
doi: 10.1145/358669.358692
|
29 |
BALNTAS V, LENC K, VEDALDI A, et al. HPatches: a benchmark and evaluation of handcrafted and learned local descriptors[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2017: 5173-5182.
|
30 |
LOWE D G . Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2): 91- 110.
doi: 10.1023/B:VISI.0000029664.99615.94
|
31 |
DETONE D, MALISIEWICZ T, RABINOVICH A. Superpoint: self-supervised interest point detection and description[C]// Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2018: 224-236.
|
32 |
SUN J M, SHEN Z H, WANG Y, et al. LoFTR: detector-free local feature matching with transformers[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 8922-8931.
|
33 |
ZHOU Q J, SATTLER T, LEAL-TAIXE L. Patch2pix: epipolar-guided pixel-level correspondences[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 4669-4678.
|