系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (10): 3008-3015.doi: 10.12305/j.issn.1001-506X.2023.10.02

• 电子技术 • 上一篇    

基于异源影像匹配的无人机在线快速定位方法

眭海刚, 李嘉杰, 苟国华   

  1. 武汉大学测绘遥感信息工程国家重点实验室, 湖北 武汉 430072
  • 收稿日期:2022-09-06 出版日期:2023-09-25 发布日期:2023-10-11
  • 通讯作者: 眭海刚
  • 作者简介:眭海刚(1973—), 男, 教授, 博士, 主要研究方向为遥感智能解译、地理信息科学理论与应用、无人自主飞行器、多传感器集成、时空大数据分析
    李嘉杰(1998—), 男, 硕士研究生, 主要研究方向为异源影像匹配、无人机定位技术
    苟国华(1996—), 男, 博士研究生, 主要研究方向为无人机视觉定位、无人机影像三维重建技术

Online fast localization method of UAVs based on heterologous image matching

Haigang SUI, Jiajie LI, Guohua GOU   

  1. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430072, China
  • Received:2022-09-06 Online:2023-09-25 Published:2023-10-11
  • Contact: Haigang SUI

摘要:

卫星导航定位是支撑无人机(unmanned aerial vehicle, UAV)安全飞行的关键技术之一, 当卫星信号弱或受干扰时, 方法定位将影响甚至危及UAVs正常飞行。视觉方法可通过影像匹配实现UAVs定位, 但异源图像差异大, 现有特征匹配方法定位的鲁棒性和实时性不能满足UAVs应用需求。提出了一种快速特征匹配定位方法, 采用残差网络提取多尺度鲁棒特征, 通过最小欧氏距离加速低分辨率特征图粗匹配, 并在高分辨率特征图上结合小型Transformer实现精细匹配, 最后利用单应矩阵校正匹配点对实现定位, 改善了UAVs定位的鲁棒性和实时性。经在武汉城郊区域实飞数据集上测试, 所提方法平均定位精度为2.86 m, 与现有典型匹配算法相比提升了2.1%, 同时在定位鲁棒性和计算速度上具有明显优势。算法在Jetson Xavier NX上完成数据集内所有影像的匹配定位, 且定位频率达到最优(1 Hz)。

关键词: 无人机, 快速视觉定位, 异源影像匹配, 残差模块, Transformer

Abstract:

Satellite navigation and positioning is one of the critical modules to ensure unmanned aerial vehicle (UAV) flight safety. When the satellite signal is weak or interfered, failure location will affect or even endanger the normal flight of UAVs. Vision-based methods can be used to locate UAVs with image matching. However, current image matching methods are unable to extract robust features due to the great difference between heterogenous images in time, which results in inadequate accuracy and efficiency. This paper proposes a fast feature matching method, which uses residual network to extract multiscale robust features and accelerates coarse matching of low-resolution feature maps using minimum Euclidean distance. The module above is used on high-resolution feature maps to achieve secondary fine matching. The homography matrix is used to correct matching pairs and achieve UAVs localization. The proposed method improves robustness and efficiency of localization for UAVs. The experimental results with Wuhan Suburb actural dataset show that the average accuracy of the proposed method is 2.86 m, which is 2.1% higher than the current typical matching algorithm. This method has obvious advantages on localization robustness and computing speed, which completes all images matching and localization on Jetson Xavier NX, while the localization frequency is optimal with the frequency of 1 Hz.

Key words: unmanned aerial vehicle (UAV), fast visual localization, heterogenous image matching, residual module, Transformer

中图分类号: