系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (9): 2986-2998.doi: 10.12305/j.issn.1001-506X.2023.09.40
• 可靠性 • 上一篇
刘子昌1,2, 白永生1, 李思雨1, 贾希胜1,*
收稿日期:
2022-11-14
出版日期:
2023-08-30
发布日期:
2023-09-05
通讯作者:
贾希胜
作者简介:
刘子昌 (1997-), 男, 博士研究生, 主要研究方向为故障预测与健康管理基金资助:
Zichang LIU1,2, Yongsheng BAI1, Siyu LI1, Xisheng JIA1,*
Received:
2022-11-14
Online:
2023-08-30
Published:
2023-09-05
Contact:
Xisheng JIA
摘要:
针对用传统的故障诊断方法难以对非线性非平稳的柴油机故障信号进行准确高效诊断的问题, 提出基于小波时频图与Swin Transformer的柴油机故障诊断方法。该方法可以有效结合小波时频分析在处理非线性非平稳信号方面的优势和Swin Transformer强大的图像分类能力, 通过连续小波变换将原始信号表示为小波时频图, 将小波时频图作为特征图输入到Swin Transformer进行训练, 实现柴油机故障状态识别。实验结果表明, 与对比方法相比, 所提方法具有较好的故障识别精度及稳定性, 在公开数据集和实验室实测数据中的整体故障诊断准确率分别达到100%和98.88%, 为柴油机故障诊断提供了一种新的思路。
中图分类号:
刘子昌, 白永生, 李思雨, 贾希胜. 基于小波时频图与Swin Transformer的柴油机故障诊断方法[J]. 系统工程与电子技术, 2023, 45(9): 2986-2998.
Zichang LIU, Yongsheng BAI, Siyu LI, Xisheng JIA. Diesel engine fault diagnosis method based on wavelet time-frequency diagram and Swin Transformer[J]. Systems Engineering and Electronics, 2023, 45(9): 2986-2998.
表1
Swin Transformer网络参数"
阶段 | 输出大小 | Swin Transformer |
阶段1 | 56×56 | |
阶段2 | 28×28 | |
阶段3 | 14×14 | |
阶段4 | 7×7 |
表4
柴油机技术指标"
项目 | 指标 |
类型 | 四冲程、直列、水冷、高压共轨 |
尺寸/mm | 1 330×970×1 005 |
缸径×行程/mm | 107×125 |
型号 | 锡柴CA6DF3-20E3 |
共轨系统 | BOSCH电控共轨 |
净功率/kW | 147 |
额定功率/kW | 155 |
净重/kg | 700(不含离合器、中冷器) |
额定转速/(r/min) | 2 300 |
进气形式 | 增压中冷 |
单缸气门数/个 | 2 |
点火顺序 | 1-5-3-6-2-4 |
压缩比 | 17.4 |
总排量/L | 6.7 |
最大扭矩/NM | 760 |
最大马力/ps | 200 |
全负荷最低燃油功率/(g/kW·h) | ≤205 |
适配范围 | 8.5~11 m公路大中型人员运输车、12 t以上中重型载重运输车 |
1 |
XU X J , YAN X P , SHENG C X , et al. A belief rule-based expert system for fault diagnosis of marine diesel engines[J]. IEEE Trans.on Systems Man Cybernetics-Systems, 2020, 50 (2): 656- 672.
doi: 10.1109/TSMC.2017.2759026 |
2 |
HOU L S , ZOU J Q , DU C J , et al. A fault diagnosis model of marine diesel engine cylinder based on modified genetic algorithm and multilayer perceptron[J]. Soft Computing, 2020, 24 (10): 7603- 7613.
doi: 10.1007/s00500-019-04388-3 |
3 |
LIU G , ZHOU X L , XU X L , et al. Fault diagnosis of diesel engine information fusion based on adaptive dynamic weighted hybrid distance-taguchi method (ADWHD-T)[J]. Applied Intelligence, 2022, 52 (9): 10307- 10329.
doi: 10.1007/s10489-021-02962-7 |
4 | KE Y , SONG E Z , CHEN Y Z , et al. Multiscale bidirectional diversity entropy for diesel injector fault-type diagnosis and fault degree diagnosis[J]. IEEE Trans.on Instrumentation and Measurement, 2022, 71, 6503410. |
5 |
CAI B P , SUN X T , WANG J X , et al. Fault detection and diagnostic method of diesel engine by combining rule-based algorithm and BNs/BPNNs[J]. Journal of Manufacturing Systems, 2020, 57, 148- 157.
doi: 10.1016/j.jmsy.2020.09.001 |
6 |
JING Y B , LIU C W , BI F R , et al. Diesel engine valve clea-rance fault diagnosis based on features extraction techniques and FastICA-SVM[J]. Chinese Journal of Mechanical Engineering, 2017, 30 (4): 991- 1007.
doi: 10.1007/s10033-017-0140-2 |
7 | RAMTEKE S M , CHELLADURAI H , AMARNATH M . Diagnosis of liner scuffing fault of a diesel engine via vibration and acoustic emission analysis[J]. Journal of Vibration Engineering & Technologies, 2020, 8 (6): 815- 833. |
8 |
BAI H J , ZHAN X B , YAN H , et al. Research on diesel engine fault diagnosis method based on stacked sparse autoencoder and support vector machine[J]. Electronics, 2022, 11 (14): 2249- 2267.
doi: 10.3390/electronics11142249 |
9 |
BI X B , LIN J S , TANG D J , et al. VMD-KFCM algorithm for the fault diagnosis of diesel engine vibration signals[J]. Energies, 2020, 13 (1): 228- 248.
doi: 10.3390/en13010228 |
10 |
白雲杰, 贾希胜, 梁庆海. 基于DVMD和SSAE的柴油机混合故障诊断[J]. 振动与冲击, 2022, 41 (11): 271-277, 297.
doi: 10.13465/j.cnki.jvs.2022.11.034 |
BAI Y J , JIA X S , LIANG Q H . Hybrid fault diagnosis of diesel engine based on DVMD and SSAE[J]. Journal of Vibration and Shock, 2022, 41 (11): 271-277, 297.
doi: 10.13465/j.cnki.jvs.2022.11.034 |
|
11 | 沈虹, 赵红东, 梅检民, 等. 基于高阶累积量图像特征的柴油机故障诊断研究[J]. 振动与冲击, 2015, 34 (11): 133- 138. |
SHEN H , ZHAO H D , MEI J M , et al. Diesel engine fault diagnosis based on high-order cumulant image features[J]. Journal of Vibration and Shock, 2015, 34 (11): 133- 138. | |
12 | 沈虹, 曾锐利, 杨万成, 等. 基于时频图像极坐标增强的柴油机故障诊断[J]. 振动、测试与诊断, 2018, 38 (1): 27-33, 203. |
SHEN H , ZENG R L , YANG W C , et al. Diesel engine fault diagnosis based on polar coordinate enhancement of time-frequency diagram[J]. Journal of Vibration, Measurement & Diagnosis, 2018, 38 (1): 27-33, 203. | |
13 | 牟伟杰, 石林锁, 蔡艳平, 等. 基于振动时频图像全局和局部特征融合的柴油机故障诊断[J]. 振动与冲击, 2018, 37 (10): 14-19, 49. |
MOU W J , SHI L S , CAI Y P , et al. Diesel engine fault diagnosis based on the global and local features fusion of time-frequency image[J]. Journal of Vibration and Shock, 2018, 37 (10): 14-19, 49. | |
14 |
LI Y B , SI S B , LIU Z L , et al. Review of local mean decomposition and its application in fault diagnosis of rotating machi-nery[J]. Journal of Systems Engineering and Electronics, 2019, 30 (4): 799- 814.
doi: 10.21629/JSEE.2019.04.17 |
15 | 侯召国, 王华伟, 周良, 等. 基于改进深度残差网络的旋转机械故障诊断[J]. 系统工程与电子技术, 2022, 44 (6): 2051- 2059. |
HOU Z G , WANG H W , ZHOU L , et al. Fault diagnosis of rotating machinery based on improved deep residual network[J]. Systems Engineering and Electronics, 2022, 44 (6): 2051- 2059. | |
16 | 马云飞, 贾希胜, 白华军, 等. 基于一维CNN参数优化的压缩振动信号故障诊断[J]. 系统工程与电子技术, 2020, 42 (9): 1911- 1919. |
MA Y F , JIA X S , BAI H J , et al. Fault diagnosis of compressed vibration signal based on 1-dimensional CNN with optimized parameters[J]. Systems Engineering and Electronics, 2020, 42 (9): 1911- 1919. | |
17 | TANG S N , YUAN S Q , ZHU Y . Convolutional neural network in intelligent fault diagnosis toward rotatory machinery[J]. IEEE Access, 2020, 8, 86510- 86519. |
18 | ZHENG H , WANG G H , LI X C . Swin-MLP: a strawberry appearance quality identification method by Swin Transformer and multi-layer perceptron[J]. Journal of Food Measurement and Characterization, 2022, 16 (4): 2789- 2800. |
19 | WANG Y T , XIE Y Z , FAN L S , et al. STMG: Swin Transformer for multi-label image recognition with graph convolution network[J]. Neural Computing & Applications, 2022, 34 (12): 10051- 10063. |
20 | JIA N , CHENG Y , LIU Y Y , et al. Intelligent fault diagnosis of rotating machines based on wavelet time-frequency diagram and optimized stacked denoising auto-encoder[J]. IEEE Sensors Journal, 2022, 22 (17): 17139- 17150. |
21 | XIONG G Q , MA W S , ZHAO N Y , et al. Multi-type diesel engines operating condition recognition method based on stacked auto-encoder and feature transfer learning[J]. IEEE Access, 2021, 9, 31043- 31052. |
22 | 卓德兵, 曹晖. 基于小波时频图与轻量级卷积神经网络的螺栓连接损伤识别[J]. 工程力学, 2021, 38 (9): 228- 238. |
ZHUO D B , CAO H . Damage identification of bolt connections based on wavelet time-frequency diagrams and lightweight convolutional neural networks[J]. Engineering Mechanics, 2021, 38 (9): 228- 238. | |
23 | SUN Q , YU X H , LI H S , et al. Fault detection for power electronic converters based on continuous wavelet transform and convolution neural network[J]. Journal of Intelligent & Fuzzy Systems, 2022, 42 (4): 3537- 3549. |
24 | ZHU Y W , YAN Q S , LU J B . Fault diagnosis method for disc slitting machine based on wavelet packet transform and support vector machine[J]. International Journal of Computer Integrated Manufacturing, 2020, 33 (10): 1118- 1128. |
25 | 鄢仁武, 林穿, 高硕勋, 等. 基于小波时频图和卷积神经网络的断路器故障诊断分析[J]. 振动与冲击, 2020, 39 (10): 198- 205. |
YAN R W , LIN C , GAO S X , et al. Fault diagnosis and analysis of circuit breaker based on wavelet time-frequency representations and convolution neural network[J]. Journal of Vibration and Shock, 2020, 39 (10): 198- 205. | |
26 | LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2021: 10012-10022. |
27 | ZHOU K , TONG Y F , LI X T , et al. Exploring global attention mechanism on fault detection and diagnosis for complex engineering processes[J]. Process Safety and Environmental Protection, 2023, 170, 660- 669. |
28 | ZHANG L , SONG Z H , ZHANG Q H , et al. Generalized transformer in fault diagnosis of Tennessee Eastman process[J]. Neural Computing and Applications, 2022, 34 (11): 8575- 8585. |
29 | 赵鸣宇. 基于Swin Transformer的跳频调制信号时频图像分类研究[D]. 银川: 宁夏大学, 2022. |
ZHAO M Y . Research on time-frequency image classification of frequency hopping modulated signal based on Swin Transformer[J]. Yinchuan: Ningxia University, 2022, | |
30 | 扶兰兰, 黄昊, 王恒, 等. 基于Swin Transformer模型的玉米生长期分类[J]. 农业工程学报, 2022, 38 (14): 191- 200. |
FU L L , HUANG H , WANG H , et al. Classification of maize growth stages using the Swin Transformer model[J]. Trans.of the Chinese Society of Agricultural Engineering, 2022, 38 (4): 191- 200. | |
31 | 魏毓辰. 基于机器学习的肾脏肿瘤MRI图像分类算法[D]. 长春: 吉林大学, 2022. |
WEI Y C. MRI image classification algorithm of kidney tumor based on machine learning[D]. Changchun: Jilin University, 2022. | |
32 | LIANG J Y, CAO J Z, SUN G L, et al. Swinir: image restoration using Swin Transformer[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2021: 1833-1844. |
33 | LIU Z, HU H, LIN Y T, et al. Swin Transformer v2: scaling up capacity and resolution[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 12009-12019. |
34 | LIU Z, NING J, CAO Y, et al. Video Swin Transformer[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 3202-3211. |
35 | SMITH W A , RANDALL R B . Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study[J]. Mechanical systems and signal processing, 2015, 64, 100- 131. |
[1] | 高升, 马广富, 郭延宁. 基于自适应未知输入观测器的多故障快速重构[J]. 系统工程与电子技术, 2022, 44(7): 2364-2373. |
[2] | 侯召国, 王华伟, 周良, 付强. 基于改进深度残差网络的旋转机械故障诊断[J]. 系统工程与电子技术, 2022, 44(6): 2051-2059. |
[3] | 刘星, 王文双, 赵建印, 朱敏. 自适应在线增量ELM的故障诊断模型研究[J]. 系统工程与电子技术, 2021, 43(9): 2678-2687. |
[4] | 李睿峰, 许爱强, 孙伟超, 王树友. 基于元学习的航空电子设备特征选择算法推荐方法[J]. 系统工程与电子技术, 2021, 43(7): 2011-2020. |
[5] | 陈洪转, 赵爱佳, 李腾蛟, 蔡匆聪, 程硕, 徐春丽. 基于故障树的复杂装备模糊贝叶斯网络推理故障诊断[J]. 系统工程与电子技术, 2021, 43(5): 1248-1261. |
[6] | 王力, 刘子奇. WPA-IGA-BP神经网络的模拟电路故障诊断[J]. 系统工程与电子技术, 2021, 43(4): 1133-1143. |
[7] | 戴金玲, 许爱强. 基于动态软聚类的航空电子部件LMKELM诊断模型[J]. 系统工程与电子技术, 2021, 43(3): 637-646. |
[8] | 孟晨, 杨华晖, 王成, 马征. 数据驱动的武器系统电子元部件级故障诊断研究综述[J]. 系统工程与电子技术, 2021, 43(2): 574-583. |
[9] | 马云飞, 贾希胜, 白华军, 郭驰名, 王双川. 基于一维CNN参数优化的压缩振动信号故障诊断[J]. 系统工程与电子技术, 2020, 42(9): 1911-1919. |
[10] | 李波, 张琳, 汪文峰, 王冠男. 基于Park-HHT的故障特征提取方法[J]. 系统工程与电子技术, 2020, 42(12): 2944-2952. |
[11] | 刘久富, 张治国, 郑锐, 刘海阳, 杨忠, 王志胜. 双组元推进系统的部分可观时间Petri网故障诊断[J]. 系统工程与电子技术, 2018, 40(6): 1337-1344. |
[12] | 朱威, 马伟明, 阳习党, 肖欢. 基于鲁棒故障诊断LPV模型的舰载QUAV跟踪控制[J]. 系统工程与电子技术, 2018, 40(11): 2540-. |
[13] | 魏子杰, 陈圣俭. 基于多特征云关联度的容差电路诊断算法[J]. 系统工程与电子技术, 2017, 39(12): 2665-2670. |
[14] | 陈寅生, 姜守达, 刘晓东, 杨京礼, 王祁. 基于EEMD样本熵和SRC的自确认气体传感器故障诊断方法[J]. 系统工程与电子技术, 2016, 38(5): 1215-. |
[15] | 周萌, 王振华, 沈毅, 王艳. 基于未知输入滤波器的过驱动系统故障诊断方法[J]. 系统工程与电子技术, 2016, 38(12): 2842-2848. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||