1 |
SHI K Y , ZHANG X S , ZHANG S , et al. Time-expanded graph based energy-efficient delay-bounded multicast over satellite networks[J]. IEEE Trans. on Vehicular Technology, 2020, 69 (9): 10380- 10384.
doi: 10.1109/TVT.2020.2988023
|
2 |
CHENG N , HE J C , YIN Z S , et al. 6G service-oriented space-air-ground integrated network: a survey[J]. Chinese Journal of Aeronautics, 2022, 35 (9): 1- 18.
doi: 10.1016/j.cja.2021.12.013
|
3 |
YANG H T , LIU W , LI H Y , et al. Maximum flow routing strategy for space information network with service function constraints[J]. IEEE Trans. on Wireless Communications, 2022, 21 (5): 2909- 2923.
doi: 10.1109/TWC.2021.3116983
|
4 |
SHENG M , WANG Y , LI J D , et al. Toward a flexible and reconfigurable broadband satellite network: resource management architecture and strategies[J]. IEEE Wireless Communications, 2017, 24 (4): 127- 133.
doi: 10.1109/MWC.2017.1600173
|
5 |
FERRE R M , LOHAN E S , KUUSNIEMI H , et al. Is LEO-based positioning with mega-constellations the answer for future equal access localization?[J]. IEEE Communications Magazine, 2022, 60 (6): 40- 46.
doi: 10.1109/MCOM.001.2100841
|
6 |
INIGO D P , BRUCE G C , EDWARD F C . A technical comparison of three low earth orbit satellite constellation systems to provide global broadband[J]. Acta Astronautica, 2019, 159, 123- 135.
doi: 10.1016/j.actaastro.2019.03.040
|
7 |
孙晨华, 肖永伟, 赵伟松, 等. 天地一体化信息网络低轨移动及宽带通信星座发展设想[J]. 电信科学, 2017, 33 (12): 43- 52.
|
|
SUN C H , XIAO Y W , ZHAO W S , et al. Development conception of space-ground inteyrated information network LEO mobile and broadband internet constellation[J]. Telecommunications Science, 2017, 33 (12): 43- 52.
|
8 |
高贺, 王玲, 黄文德, 等. 北斗全球卫星导航系统境外星数据快速回传的路由优化方法[J]. 中国空间科学技术, 2018, 38 (2): 9- 15.
doi: 10.16708/j.cnki.1000-758x.2018.0002
|
|
GAO H , WANG L , HUANG W D , et al. Routing optimization method for fast return of data on overseas satellites in Beidou global navigation satellite system[J]. Chinese Space Science and Technology, 2018, 38 (2): 9- 15.
doi: 10.16708/j.cnki.1000-758x.2018.0002
|
9 |
JIA M , ZHU S Y , WANG L F , et al. Routing algorithm with virtual topology toward to huge numbers of LEO mobile satellite network based on SDN[J]. Mobile Networks and Applications, 2017, 23 (2): 285- 300.
|
10 |
ZHANG J W , XING L N , PENG G S , et al. A large-scale multiobjective satellite data transmission scheduling algorithm based on SVM+NSGA-Ⅱ[J]. Swarm and Evolutionary Computation, 2019, 50, 100560.
doi: 10.1016/j.swevo.2019.100560
|
11 |
CHEN Y G , CHEN M , WEN J , et al. An adaptive large neighborhood search algorithm for the satellite data transmission scheduling problem[J]. International Journal of Aerospace Engineering, 2020, 5243749.
|
12 |
ZHANG J W , XING L N . An improved genetic algorithm for the integrated satellite imaging and data transmission scheduling problem[J]. Computers & Operations Research, 2022, 139, 105626.
|
13 |
QU Q Y , LIU K X LI X J , et al. Satellite observation and data-transmission scheduling using imitation learning based on mixed integer linear programming[J]. IEEE Trans. on Aerospace and Electronic Systems, 2022,
doi: 10.1109/TAES.2022.3210073
|
14 |
JIA X H , LV T , HE F , et al. Collaborative data downloading by using inter-satellite links in LEO satellite networks[J]. IEEE Trans. on Wireless Communications, 2017, 16 (3): 1523- 1532.
doi: 10.1109/TWC.2017.2647805
|
15 |
DU Y H , WANG L , XING L N , et al. Data-driven heuristic assisted memetic algorithm for efficient inter-satellite link scheduling in the Beidou navigation satellite system[J]. IEEE/ CAA Journal of Automatica Sinica, 2021, 8 (11): 1800- 1816.
doi: 10.1109/JAS.2021.1004174
|
16 |
YAN Z B , ZHAO K L , LI W F , et al. Topology design for GNSSs under polling mechanism considering both inter-satellite links and ground-satellite links[J]. IEEE Trans. on Vehicular Technology, 2022, 71 (2): 2084- 2097.
doi: 10.1109/TVT.2021.3135563
|
17 |
王瑞松, 马若飞, 王琦, 等. 卫星网络时隙分配算法与路由规划优化[J]. 系统工程与电子技术, 2022, 44 (4): 1343- 1353.
|
|
WANG R S , MA R F , WANG Q , et al. Optimization of time slot allocation algorithm and routing scheduling for satellite network[J]. Systems Engineering and Electronics, 2022, 44 (4): 1343- 1353.
|
18 |
LIU J M , XING L N , WANG L , et al. A data-driven parallel adaptive large neighbor-hood search algorithm for a large-scale inter-satellite link scheduling problem[J]. Swarm and Evolutionary Computation, 2022, 74, 101124.
doi: 10.1016/j.swevo.2022.101124
|
19 |
LIANG Q Z , FAN Y Y , YAN X S . An algorithm based on differential evolution for satellite data transmission scheduling[J]. International Journal of Computational Science and Engineering, 2018, 18 (3): 279- 285.
|
20 |
FRAIRE J A , FINOCHIETTO J M . Routing-aware fair contact plan design for predictable delay tolerant networks[J]. Ad Hoc Networks, 2015, 25, 1570- 8705.
|
21 |
YAN H C, ZHANG Q J, SUN Y, et al. Contact plan design for navigation satellite network based on simulated annealing[C]//Proc. of the IEEE International Conference on Communication Software and Networks, 2015: 12-16.
|
22 |
CAINI C , CRUICKSHANK H , FARRELL S , et al. Delay and disruption tolerant networking (DTN): an alternative solution for future satellite networking applications[J]. Proceedings of the IEEE, 2011, 99 (11): 1980- 1997.
doi: 10.1109/JPROC.2011.2158378
|
23 |
HUANG M S , CHEN S Y , ZHU Y , et al. Topology control for time-evolving and predictable delay tolerant networks[J]. IEEE Trans. on Computers, 2013, 62 (11): 2308- 2321.
doi: 10.1109/TC.2012.220
|
24 |
LI H Y , ZHANG T , ZHANG Y K , et al. A maximum flow algorithm based on storage time aggregated graph for delay-tolerant networks[J]. Ad Hoc Networks, 2017, 59, 63- 70.
doi: 10.1016/j.adhoc.2017.01.006
|
25 |
ZHANG T , LI H Y , ZHANG S , et al. STAG-based QoS support routing strategy for multiple missions over the Satellite networks[J]. IEEE Trans. on Communications, 2019, 67 (10): 6912- 6924.
doi: 10.1109/TCOMM.2019.2929757
|
26 |
MARCHESE M , PATRONE F . E-CGR: energy-aware contact graph routing over nanosatellite networks[J]. IEEE Trans. on Green Communications and Networking, 2020, 4 (3): 890- 902.
doi: 10.1109/TGCN.2020.2978296
|
27 |
AHMADIAN M M , SALEHIPOUR A , CHENG T C E . A meta-heuristic to solve the just-in-time job-shop scheduling problem[J]. European Journal of Operational Research, 2021, 288 (1): 14- 29.
doi: 10.1016/j.ejor.2020.04.017
|
28 |
YAHYAOUI H , KAABACHI I , KRICHEN S , et al. Two metaheuristic approaches for solving the multi-compartment vehicle routing problem[J]. Operational Research, 2020, 20, 2085- 2108.
doi: 10.1007/s12351-018-0403-4
|
29 |
GAO K Z , ZHANG L , CHEN Z H , et al. A review on swarm intelligence and evolutionary algorithms for solving flexible job shop scheduling problems[J]. IEEE/CAA Journal of Automatica Sinica, 2019, 6 (4): 904- 916.
doi: 10.1109/JAS.2019.1911540
|
30 |
PRAKASH A , CHAN F T S , DESHMUKH S G . FMS scheduling with knowledge based genetic algorithm approach[J]. Expert Systems with Applications, 2011, 38 (4): 3161- 3171.
doi: 10.1016/j.eswa.2010.09.002
|
31 |
GHAHRAMANI M , QIAO Y , ZHOU M C , et al. AI-based modeling and data-driven evaluation for smart manufacturing processes[J]. IEEE/CAA Journal of Automatica Sinica, 2020, 7 (4): 1026- 1037.
doi: 10.1109/JAS.2020.1003114
|
32 |
PAN Z X , LEI D M , WANG L . A knowledge-based two-population optimization algorithm for distributed energy-efficient parallel machines scheduling[J]. IEEE Trans. on Cybernetics, 2022, 52 (6): 5051- 5063.
doi: 10.1109/TCYB.2020.3026571
|
33 |
CPLEX Optimization Studio . CPLEX user's manual[M]. New York, USA: IBM Corporation, 2015.
|
34 |
FRAIRE J A. Introducing contact plan designer: a planning tool for DTN based space-terrestrial networks[C]//Proc. of the 6th International Conference on Space Mission Challenges for Information Technology, 2017: 124-127.
|