系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (9): 2894-2901.doi: 10.12305/j.issn.1001-506X.2023.09.29
王希彬1,*, 戴洪德1, 全闻捷2, 王瑞1, 贾临生1
收稿日期:
2022-04-06
出版日期:
2023-08-30
发布日期:
2023-09-05
通讯作者:
王希彬
作者简介:
王希彬(1985—), 男, 讲师, 博士, 主要研究方向为行人导航、非线性滤波基金资助:
Xibin WANG1,*, Hongde DAI1, Wenjie QUAN2, Rui WANG1, Linsheng JIA1
Received:
2022-04-06
Online:
2023-08-30
Published:
2023-09-05
Contact:
Xibin WANG
摘要:
姿态估计是导航解算的基础, 在基于足绑式惯性测量单元的行人导航系统中, 由于足部运动加速度变化频繁且剧烈, 使得常见的姿态融合算法精度下降。为了减小运动加速度对姿态解算的影响, 通过数据分析定义了可以进行加速度补偿的拟合区间, 在零速检测的基础上给出了拟合区间的判定方法, 提出了对加速度计的输出进行一阶拟合补偿的方案, 并设计了能完成后续行人导航姿态估计任务的容积卡尔曼滤波(cubature Kalman filter, CKF)算法, 在非拟合区间则采用三子样旋转矢量法进行姿态更新。在数值仿真中,将所提算法与纯三子样旋转矢量法进行了对比分析, 对算法精度进行了测试, 在行人导航试验中验证了算法的有效性。试验结果表明, 在行走过程中及出现较大运动加速度的情况下, 加入加速度补偿的CKF姿态估计精度平均提高了35.3%。在矩形闭合路径试验中, 起终点水平误差降低了56.3%, 起终点高度误差降低了20.3%。
中图分类号:
王希彬, 戴洪德, 全闻捷, 王瑞, 贾临生. 基于加速度补偿的惯性行人导航非零速区间姿态估计CKF算法[J]. 系统工程与电子技术, 2023, 45(9): 2894-2901.
Xibin WANG, Hongde DAI, Wenjie QUAN, Rui WANG, Linsheng JIA. Nonzero velocity interval attitude estimation CKF algorithm based on acceleration compensation for inertial pedestrian navigation[J]. Systems Engineering and Electronics, 2023, 45(9): 2894-2901.
1 | NAGY S B ARNE J T , FOSSEN T I. , et al. Attitude estimation by multiplicative exogenous Kalman filter[J]. Automatica, 2018, 95 (1): 347- 355. |
2 |
SHUSTER M D , OH S D . Three-axis attitude determination from vector observations[J]. Guidance Control Dynam, 1981, 4 (1): 70- 77.
doi: 10.2514/3.19717 |
3 | CRASSIDIS J L , MARKLEY F L , CHENG Y . Survey of nonlinear attitude estimation methods[J]. Journal of Guidance Control & Dynamics, 2007, 30 (1): 12- 28. |
4 |
WU J , ZHOU Z B , FOURATI H , et al. Generalized linear quaternion complementary filter for attitude estimation from multi-sensor observations: an optimization approach[J]. IEEE Trans.on Automation Science and Engineering, 2019, 16 (3): 1330- 1343.
doi: 10.1109/TASE.2018.2888908 |
5 |
FISCHER C , SUKUMAR P T , MIKE H . Tutorial: implementing a pedestrian tracker using inertial sensors[J]. IEEE Pervasive Computing, 2013, 12 (2): 17- 27.
doi: 10.1109/MPRV.2012.16 |
6 | TITTERTON D H , WESTON J L . Strapdown inertial navigation technology[M]. 2nd ed. USA: American Institude of Aeronautics & Astronautics lncorporation, 2004. |
7 | CHOUKROUN D , BARITZHACK I Y , OSHMAN Y . Novel quaternion Kalman filter[J]. IEEE Trans.on Aerospace & Electronic Systems, 2006, 42 (1): 174- 190. |
8 |
张煌军, 徐雪松, 罗伟, 等. 基于平方根容积卡尔曼滤波的四旋翼无人机的姿态解算[J]. 科学技术与工程, 2019, 19 (12): 248- 253.
doi: 10.3969/j.issn.1671-1815.2019.12.036 |
ZHANG H J , XU X S , LUO W , et al. Attitude calculation of four rotor UAV based on square root volume Kalman filter[J]. Science, Technology and Engineering, 2019, 19 (12): 248- 253.
doi: 10.3969/j.issn.1671-1815.2019.12.036 |
|
9 | PSIAKI M L . Backward-smoothing extended Kalman filter[J]. Journal of Guidance Control & Dynamics, 2005, 28 (5): 885- 894. |
10 | JULIER S J, UHLMANN J K. A new extension of the Kalman filter to nonlinear systems[C]//Proc. of the International Symposium on Aerospace/Defense Sensing, Simulation and Controls, 1997: 182-193. |
11 |
ARASARATNAM I , HAYKIN S . Cubature Kalman filters[J]. IEEE Trans.on Automatic Control, 2009, 54 (6): 1254- 1269.
doi: 10.1109/TAC.2009.2019800 |
12 | ELWELL J. Inertial navigation for the urban warrior[C]//Proc. of the SPIE International Society for Optical Engineering, 1999, 3709: 196-204. |
13 |
戴文战, 黄晓姣, 沈忱. 带遗忘因子的自适应迭代容积卡尔曼滤波算法[J]. 科技通报, 2019, 35 (1): 181- 185.
doi: 10.13774/j.cnki.kjtb.2019.01.036 |
DAI W Z , HUANG X J , SHEN C . Adaptive iterative cubature Kalman filter with forgetting factor[J]. Science and Technology Bulletin, 2019, 35 (1): 181- 185.
doi: 10.13774/j.cnki.kjtb.2019.01.036 |
|
14 |
刘华, 缪晨, 吴文. 平方根嵌入式容积卡尔曼粒子滤波算法[J]. 南京理工大学学报, 2015, 39 (4): 471- 476.
doi: 10.14177/j.cnki.32-1397n.2015.39.04.015 |
LIU H , MIAO C , WU W . Square root embedded cubature Kalman particle filter algorithm[J]. Journal of Nanjing University of Technology, 2015, 39 (4): 471- 476.
doi: 10.14177/j.cnki.32-1397n.2015.39.04.015 |
|
15 |
徐树生, 林孝工, 李新飞. 强跟踪自适应平方根容积卡尔曼滤波算法[J]. 电子学报, 2014, 42 (12): 2394- 2400.
doi: 10.3969/j.issn.0372-2112.2014.12.009 |
XU S S , LIN X G , LI X F . Strong tracking adaptive square root cubature Kalman filter algorithm[J]. Journal of Electronics, 2014, 42 (12): 2394- 2400.
doi: 10.3969/j.issn.0372-2112.2014.12.009 |
|
16 |
徐树生, 林孝工, 赵大威, 等. 强跟踪SRCKF及其在船舶动力定位中的应用[J]. 仪器仪表学报, 2013, 34 (6): 1266- 1272.
doi: 10.3969/j.issn.0254-3087.2013.06.010 |
XU S S , LIN X G , ZHAO D W , et al. Strong tracking SRCKF and its application in ship dynamic positioning[J]. Journal of Instrumentation, 2013, 34 (6): 1266- 1272.
doi: 10.3969/j.issn.0254-3087.2013.06.010 |
|
17 |
巫春玲, 李永萍, 谢美美, 等. 迭代自适应容积卡尔曼滤波算法[J]. 电子测量技术, 2019, 42 (17): 65- 70.
doi: 10.19651/j.cnki.emt.1902809 |
WU C L , LI Y P , XIE M M , et al. Iterative adaptive volume Kalman filter algorithm[J]. Electronic Measurement Technology, 2019, 42 (17): 65- 70.
doi: 10.19651/j.cnki.emt.1902809 |
|
18 | WEI X Q , SONG S M . Cubature Kalman filter based satellite attitude estimation[J]. Journal of Astronautics, 2013, 34 (2): 193- 200. |
19 | ZANETTI R, BISHOP R. Quaternion estimation and norm constrained kalman filtering[C]//Proc. of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 2013. |
20 | WANG X L, YAN S J, CAO L Z. Research on pedestrian navigation system based on multi-sensor zero speed correction[C]// Proc. of the IEEE 4th Information Technology and Mechatronics Engineering Conference, 2018: 1786-1790. |
21 | 田晓春, 陈家斌, 韩勇强, 等. 多条件约束的行人导航零速区间检测算法[J]. 中国惯性技术学报, 2016, 24 (1): 1- 5. |
TIAN X C , CHEN J B , HAN Y Q , et al. Zero speed interval detection algorithm for pedestrian navigation with multiple constraints[J]. Chinese Journal of Inertial Technology, 2016, 24 (1): 1- 5. | |
22 | 苑宝贞, 苏中, 李擎, 等. 基于贝叶斯网络的强鲁棒性零速检测方法[J]. 计算机测量与控制, 2016, 24 (3): 200- 207. |
YUAN B Z , SU Z , LI Q , et al. Strong robustness zero speed detection method based on Bayesian network[J]. Computer Measurement and Control, 2016, 24 (3): 200- 207. | |
23 | 陈国良, 杨洲. 基于加速度量测幅值零速检测的计步算法研究[J]. 武汉大学学报(信息科学版), 2017, 42 (6): 726- 731. |
CHEN G L , YANG Z . Research on step counting algorithm based on zero velocity detection of acceleration measurement amplitude[J]. Geomatics and Information Science of Wuhan University, 2017, 42 (6): 726- 731. | |
24 | SKOG I, NILSSON J O, HNDEL P. Evaluation of zero-velocity detectors for foot-mounted inertial navigation system[C]//Proc. of the International Conference Indoor Positioning and Indoor Navigation, 2010. |
25 | SKOG I , HNDEL P , NILSSON J O , et al. Zero-velocity detection-an algorithm evaluation[J]. IEEE Trans.on Biomedical Engineering, 2010, 57 (11): 2657- 2666. |
26 | WANG Z L , ZHAO H Y , QIU S , et al. Stance-phase detection for ZUPT-aided foot-mounted pedestrian navigation system[J]. IEEE/ASME Trans.on Mechatronics, 2015, 20 (6): 3170- 3181. |
27 | LI X F, MAO Y L, XIE L, et al. Applications of zero-velocity detector and Kalman filter in zero velocity update for inertial navigation system[C]//Proc. of the IEEE Chinese Guidance, Navigation and Control Conference, 2014: 1760-1763. |
28 | 徐昊, 郑婷婷, 宋天威, 等. 自适应零速修正辅助的微惯性定位系统研究[J]. 南京师范大学学报(工程技术版), 2017, 17 (4): 14- 19. |
XU H , ZHENG T T , SONG T W , et al. Research on micro inertial positioning system assisted by adaptive zero speed correction[J]. Journal of Nanjing Normal University (Engineering Technology Edition), 2017, 17 (4): 14- 19. | |
29 | 时伟, 王阳. 基于不等式约束卡尔曼滤波的双MIMU导航位置校正方法[J]. 中国惯性技术学报, 2017, 25 (1): 11- 16. |
SHI W , WANG Y . Dual MIMU navigation position correction method based on inequality constrained Kalman filter[J]. Chinese Journal of Inertial Technology, 2017, 25 (1): 11- 16. | |
30 | NILSSON J O, SKOG I, HNDEL P, et al. Foot-mounted INS for everybody-an open source embedded implementation[C]//Proc. of the IEEE/ION Position Location and Navigation Symposium, 2012. |
31 | OA L, BORENSTEIN J. Non-GPS navigation with the personal dead-reckoning system[C]//Proc. of the SPIE Defense and Security Conference, 2007: 130-140. |
32 | KRACH B, ROBERSTON P. Cascaded estimation architecture for integration of foot-mounted inertial sensors[C]//Proc. of the IEEE/ION Position Location and Navigation Symposium, 2008: 112-119. |
33 | JIMENEZ A, SECO F, PRIETO J C, et al. Indoor pedestrian navigation using an INS/EKF framework for yaw drift reduction and a foot-mounted IMU[C]//Proc. of the 7th Workshop on Positioning Navigation and Communication, 2010: 135-143. |
34 | CASTANEDA N, LAMY-PERBAL S. An improved shoe-mounted inertial navigation system[C]//Proc. of the IEEE International Conference on Indoor Positioning and Indoor Navigation, 2010. |
35 | MAKNI A , KIBANGOU A Y , FOURATI H . Data fusion-based descriptor approach for attitude estimation underaccele-rated maneuvers[J]. Asian Journal of Control, 2019, 21 (4): 1433- 1442. |
36 | AILNENI S , KASHYAP S K , KUMAR N S . INS/GPS fusion architectures for unmanned aerial vehicles[J]. International Journal of Intelligent Unmanned Systems, 2014, 2 (3): 154- 167. |
37 | EUSTON M, COOTE P, MAHONY R, et al. A complementary filter for attitude estimation of a fixed-wing UAV[C]//Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008: 340-345. |
38 | 全闻捷, 周绍磊, 戴洪德, 等. 基于高斯-牛顿四元数描述符滤波器的姿态估计算法[J]. 传感技术学报, 2020, 33 (11): 1627- 1636. |
QUAN W J , ZHOU S L , DAI H D , et al. Attitude estimation algorithm based on Gaussian Newton quaternion descriptor filter[J]. Journal of Sensing Technology, 2020, 33 (11): 1627- 1636. | |
39 | 全闻捷, 周绍磊, 姜旭, 等. 基于加速度和速度建模的行人导航位置估计算法研究[J]. 仪表技术, 2020, (11): 29- 35. |
QUAN W J , ZHOU S L , JIANG X , et al. Research on pedes trian navigation position estimation algorithm based on accele- ration and velocity modeling[J]. Instrument Technology, 2020, (11): 29- 35. | |
40 | 戴洪德, 李松林, 周绍磊, 等. 基于伪标准差和N-P准则的行人导航零速检测[J]. 中国惯性技术学报, 2018, 26 (6): 701- 707. |
DAI H D , LI S L , ZHOU S L , et al. Zero speed detection of pedestrian navigation based on pseudo standard deviation and N-P criterion[J]. Chinese Journal of Inertial Technology, 2018, 26 (6): 701- 707. | |
41 | 李松林, 周绍磊, 戴洪德. 基于MEMS传感器的惯性行人导航算法研究[D]. 烟台: 海军航空大学, 2018. |
LI S L, ZHOU S L, DAI H D. Research on inertial pedestrian navigation algorithm based on MEMS sensor[D]. Yantai: Naval Aviation University, 2018. |
[1] | 寇鹏, 刘永祥, 张弛, 李玮杰, 张双辉, 霍凯. 序列ISAR像复杂结构航天器在轨姿态估计[J]. 系统工程与电子技术, 2023, 45(8): 2438-2445. |
[2] | 查峰, 位秋硕, 何泓洋, 李豹. 基于IMU体对角线旋转的双轴旋转方案[J]. 系统工程与电子技术, 2023, 45(8): 2546-2554. |
[3] | 戴洪德, 马宇峰, 戴邵武, 郑百东, 张笑宇. 航向误差非线性预测的惯性行人导航零速修正算法[J]. 系统工程与电子技术, 2023, 45(8): 2555-2561. |
[4] | 薛海建, 王涛, 蔡星会, 王金涛, 江英. 里程计辅助的车载SINS行进间对准方法[J]. 系统工程与电子技术, 2023, 45(6): 1805-1813. |
[5] | 何益康, 张文瀚, 王振华, 何闻. 用于卫星应急恢复的太阳电池阵转角估计方法[J]. 系统工程与电子技术, 2023, 45(3): 797-805. |
[6] | 沈子涵, 赵修斌, 张闯, 张良, 刘鑫贤. 基于长短期记忆神经网络的自适应容错方法[J]. 系统工程与电子技术, 2023, 45(3): 831-838. |
[7] | 高威, 李亚峰, 王可东. 信号级GNSS/SINS超紧组合导航仿真平台设计[J]. 系统工程与电子技术, 2023, 45(1): 184-192. |
[8] | 穆静, 严东升, 蔡远利, 王长元. 基于Masreliez-Martin的鲁棒分数阶容积卡尔曼滤波算法及应用[J]. 系统工程与电子技术, 2023, 45(1): 234-240. |
[9] | 徐庚, 何永旭, 张勇刚. 基于罗德里格斯参数的惯性系传递对准算法[J]. 系统工程与电子技术, 2022, 44(9): 2903-2913. |
[10] | 史浩然, 卢发兴, 祁江鑫, 杨光. 基于辅助信标的无人机协同目标跟踪[J]. 系统工程与电子技术, 2022, 44(7): 2302-2310. |
[11] | 张平安, 汪伟, 高敏, 王毅. SR-CH∞KF用于弹丸飞行姿态测量研究[J]. 系统工程与电子技术, 2022, 44(1): 262-269. |
[12] | 文者, 卞鸿巍, 马恒, 臧涛. 中低纬度下惯导极区性能模拟测试方法[J]. 系统工程与电子技术, 2021, 43(9): 2620-2627. |
[13] | 李春辉, 马健, 杨永建, 肖冰松, 邓有为, 盛涛. 基于修正的自适应平方根容积卡尔曼滤波算法[J]. 系统工程与电子技术, 2021, 43(7): 1824-1830. |
[14] | 赵仁杰, 胡柏青, 吕旭, 田佳玉. 基于双欧拉角的UKF组合导航滤波算法[J]. 系统工程与电子技术, 2021, 43(7): 1912-1920. |
[15] | 卢雨, 王海滨. 空基无源相干定位系统的机动目标跟踪算法[J]. 系统工程与电子技术, 2021, 43(4): 875-882. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||