系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (9): 2831-2842.doi: 10.12305/j.issn.1001-506X.2023.09.22
李庚松1, 刘艺1,*, 郑奇斌2, 秦伟1, 李红梅2, 任小广1, 宋明武3
收稿日期:
2022-05-06
出版日期:
2023-08-30
发布日期:
2023-09-05
通讯作者:
刘艺
作者简介:
李庚松 (1999—), 男, 硕士, 主要研究方向为算法选择、大数据技术基金资助:
Gengsong LI1, Yi LIU1,*, Qibin ZHENG2, Wei QIN1, Hongmei LI2, Xiaoguang REN1, Mingwu SONG3
Received:
2022-05-06
Online:
2023-08-30
Published:
2023-09-05
Contact:
Yi LIU
摘要:
为了提升基于元学习算法选择的性能, 提出一种基于蚁狮算法的元特征选择方法。首先, 通过鲁棒初始化机制构建初始种群, 增强所选元特征子集的鲁棒性。其次, 在个体解的搜索过程中应用动态边界策略, 增加方法的种群多样性。然后, 采用混沌映射变异策略, 提升方法的寻优性能, 给出方法伪代码并分析时间复杂度。最后, 使用130个数据集、150种元特征、8种候选算法和5种性能指标构建分类算法选择问题进行测试实验, 分析方法的参数敏感性和机制策略效果, 通过准确率、查准率、查全率和F1分数指标评估并对比方法性能, 验证了所提方法的有效性和优越性。
中图分类号:
李庚松, 刘艺, 郑奇斌, 秦伟, 李红梅, 任小广, 宋明武. 基于蚁狮算法的元特征选择方法[J]. 系统工程与电子技术, 2023, 45(9): 2831-2842.
Gengsong LI, Yi LIU, Qibin ZHENG, Wei QIN, Hongmei LI, Xiaoguang REN, Mingwu SONG. Meta-feature selection method based on ant lion optimization algorithm[J]. Systems Engineering and Electronics, 2023, 45(9): 2831-2842.
表1
实验数据集信息"
序号 | 数据集名称 | 属性数 | 实例数 | 类数 | 序号 | 数据集名称 | 属性数 | 实例数 | 类数 | |
1 | abalone | 8 | 4 177 | 29 | 66 | kr_vs_kp | 36 | 3 196 | 2 | |
2 | Absenteeism_at_work | 20 | 740 | 18 | 67 | led7digit | 7 | 500 | 10 | |
3 | advertisement | 1 558 | 3 279 | 2 | 68 | lense | 5 | 24 | 3 | |
4 | analcatdata_assessment | 15 | 13 | 4 | 69 | letter | 16 | 20 000 | 26 | |
5 | analcatdata_authorship | 70 | 841 | 4 | 70 | lung_cancer | 56 | 32 | 3 | |
6 | analcatdata_bankruptcy | 6 | 50 | 2 | 71 | lymphography | 18 | 148 | 4 | |
7 | analcatdata_birthday | 3 | 365 | 7 | 72 | magic | 10 | 19 020 | 2 | |
8 | analcatdata_bondrate | 11 | 57 | 5 | 73 | mfeat-fac | 216 | 2 000 | 10 | |
9 | analcatdata_boxing1 | 3 | 120 | 2 | 74 | mfeat-fou | 76 | 2 000 | 10 | |
10 | analcatdata_boxing2 | 3 | 132 | 2 | 75 | mfeat-kar | 64 | 2 000 | 10 | |
11 | analcatdata_braziltourism | 8 | 412 | 7 | 76 | mfeat-mor | 6 | 2 000 | 10 | |
12 | analcatdata_broadway | 9 | 95 | 5 | 77 | mfeat-pix | 240 | 2 000 | 10 | |
13 | analcatdata_broadwaymult | 7 | 285 | 7 | 78 | monks_1_test | 6 | 122 | 2 | |
14 | analcatdata_chall101 | 2 | 138 | 2 | 79 | monks_1_train | 6 | 124 | 2 | |
15 | analcatdata_creditscore | 6 | 100 | 2 | 80 | monks_2_test | 6 | 432 | 2 | |
16 | analcatdata_currency | 3 | 31 | 7 | 81 | monks_2_train | 6 | 169 | 2 | |
17 | analcatdata_cyyoung8092 | 10 | 97 | 2 | 82 | monks_3_test | 6 | 432 | 2 | |
18 | analcatdata_cyyoung9302 | 10 | 92 | 2 | 83 | monks_3_train | 6 | 122 | 2 | |
19 | analcatdata_dmf | 4 | 797 | 6 | 84 | movement_libras | 90 | 360 | 15 | |
20 | analcatdata_draft | 4 | 365 | 12 | 85 | mushroom | 22 | 8 124 | 2 | |
21 | analcatdata_esr | 2 | 32 | 2 | 86 | newthyroid | 5 | 215 | 3 | |
22 | analcatdata_homerun | 26 | 162 | 2 | 87 | nursery | 8 | 12 960 | 5 | |
23 | analcatdata_lawsuit | 4 | 264 | 2 | 88 | optdigits | 64 | 3 823 | 10 | |
24 | analcatdata_mapleleafs | 1 | 84 | 3 | 89 | page_blocks | 10 | 5 473 | 5 | |
25 | analcatdata_marketing | 32 | 310 | 5 | 90 | penbased | 16 | 10 992 | 10 | |
26 | analcatdata_votesurvey | 4 | 48 | 4 | 91 | phoneme | 5 | 5 404 | 2 | |
27 | anneal | 38 | 798 | 6 | 92 | pima | 8 | 768 | 2 | |
28 | appendicitis | 7 | 106 | 2 | 93 | post_operative | 8 | 90 | 3 | |
29 | arrhythmia | 279 | 452 | 16 | 94 | primary_tumor | 17 | 339 | 22 | |
30 | audiology_standardized | 69 | 226 | 24 | 95 | ring | 20 | 7 400 | 2 | |
31 | australian | 14 | 690 | 2 | 96 | risk_factors | 35 | 858 | 26 | |
32 | Autism_Adult | 20 | 704 | 2 | 97 | saheart | 9 | 462 | 2 | |
33 | automobile | 25 | 205 | 7 | 98 | satimage | 36 | 6 435 | 7 | |
34 | balance_scale | 4 | 625 | 3 | 99 | segmentation_test | 19 | 210 | 7 | |
35 | ballon | 4 | 16 | 2 | 100 | segmentation_train | 19 | 2 100 | 7 | |
36 | banana | 2 | 5 300 | 2 | 101 | shuttle | 9 | 58 000 | 7 | |
37 | breast_cancer | 9 | 286 | 2 | 102 | shuttle_landing_control | 6 | 15 | 2 | |
38 | breast_cancer_wisconsin | 9 | 699 | 2 | 103 | sonar | 60 | 208 | 2 | |
39 | bupa | 6 | 345 | 2 | 104 | soybean_large | 35 | 307 | 19 | |
40 | car | 6 | 1 728 | 4 | 105 | soybean_small | 35 | 47 | 4 | |
41 | chess | 36 | 3 196 | 2 | 106 | spambase | 57 | 4 597 | 2 | |
42 | cleveland | 13 | 297 | 5 | 107 | spectf_test | 44 | 269 | 2 | |
43 | cmc | 9 | 1473 | 3 | 108 | spectf_train | 44 | 80 | 2 | |
44 | coil2000 | 85 | 9 822 | 2 | 109 | spect_test | 22 | 187 | 2 | |
45 | contraceptive | 9 | 1 473 | 3 | 110 | spect_train | 22 | 80 | 2 | |
46 | crx | 15 | 653 | 2 | 111 | splice | 60 | 3 190 | 3 | |
47 | cylinder-bands | 19 | 539 | 2 | 112 | student_mat | 30 | 395 | 21 | |
48 | dermatology | 34 | 366 | 6 | 113 | student_por | 30 | 649 | 21 | |
49 | divorce | 54 | 170 | 2 | 114 | Surveillance | 7 | 15 | 3 | |
50 | echocardiogram | 11 | 75 | 3 | 115 | tae | 5 | 151 | 3 | |
51 | ecoli | 7 | 336 | 8 | 116 | texture | 40 | 5 000 | 11 | |
52 | flag | 28 | 194 | 8 | 117 | thyroid | 21 | 7 200 | 3 | |
53 | flare | 11 | 1 066 | 6 | 118 | tic_tac_toe | 9 | 958 | 2 | |
54 | german | 20 | 1 000 | 2 | 119 | titanic | 3 | 2 201 | 2 | |
55 | glass | 9 | 214 | 7 | 120 | trains | 32 | 10 | 2 | |
56 | haberman | 3 | 306 | 2 | 121 | twonorm | 20 | 7 400 | 2 | |
57 | hayes_roth_test | 4 | 28 | 4 | 122 | vehicle | 18 | 846 | 4 | |
58 | hayes_roth_train | 4 | 132 | 4 | 123 | vowel | 13 | 990 | 11 | |
59 | heart_statlog | 13 | 270 | 2 | 124 | wdbc | 30 | 569 | 2 | |
60 | hepatitis | 19 | 155 | 2 | 125 | wine | 13 | 178 | 3 | |
61 | horse-colic-test | 27 | 68 | 2 | 126 | winequality_red | 11 | 1 599 | 10 | |
62 | horse-colic-train | 27 | 300 | 2 | 127 | winequality_white | 11 | 4 898 | 10 | |
63 | housevotes | 16 | 232 | 2 | 128 | wpbc | 32 | 198 | 2 | |
64 | ionosphere | 34 | 351 | 2 | 129 | yeast | 8 | 1 484 | 13 | |
65 | iris | 4 | 150 | 3 | 130 | zoo | 16 | 101 | 7 |
表2
元特征信息"
元特征类型 | 元特征名称 |
基于统计和信息论的元特征 | attr_conc.mean、attr_conc.sd、attr_ent.mean、attr_ent.sd、attr_to_inst、can_cor.mean、can_cor.sd、cat_to_num、class_conc.mean、class_conc.sd、class_ent、cor.mean、cor.sd、cov.mean、cov.sd、eigenvalues.mean、eigenvalues.sd、eq_num_attr、freq_class.mean、freq_class.sd、g_mean.mean、g_mean.sd、gravity、h_mean.mean、h_mean.sd、inst_to_attr、iq_range.mean、iq_range.sd、joint_ent.mean、joint_ent.sd、kurtosis.mean、kurtosis.sd、lh_trace、mad.mean、mad.sd、max.mean、max.sd、mean.mean、mean.sd、median.mean、median.sd、min.mean、min.sd、mut_inf.mean、mut_inf.sd、nr_attr、nr_bin、nr_cat、nr_class、nr_cor_attr、nr_disc、nr_inst、nr_norm、nr_num、nr_outliers、ns_ratio、num_to_cat、one_itemset.mean、one_itemset.sd、p_trace、range.mean、range.sd、roy_root、sd.mean、sd.sd、sd_ratio、skewness.mean、skewness.sd、sparsity.mean、sparsity.sd、t_mean.mean、t_mean.sd、two_itemset.mean、two_itemset.sd、var.mean、var.sd、w_lambda |
基于模型的元特征 | leaves、leaves_branch.mean、leaves_branch.sd、leaves_corrob.mean、leaves_corrob.sd、leaves_homo.mean、leaves_homo.sd、leaves_per_class.mean、leaves_per_class.sd、nodes、nodes_per_attr、nodes_per_inst、nodes_per_level.mean、nodes_per_level.sd、nodes_repeated.mean、nodes_repeated.sd、tree_depth.mean、tree_depth.sd、tree_imbalance.mean、tree_imbalance.sd、tree_shape.mean、tree_shape.sd、var_importance.mean、var_importance.sd |
基于基准的元特征 | best_node.mean、best_node.sd、elite_nn.mean、elite_nn.sd、linear_discr.mean、linear_discr.sd、naive_bayes.mean、naive_bayes.sd、one_nn.mean、one_nn.sd、random_node.mean、random_node.sd、worst_node.mean、worst_node.sd |
基于问题复杂度的元特征 | c1、c2、cls_coef、density、f1.mean、f1.sd、f1v.mean、f1v.sd、f2.mean、f2.sd、f3.mean、f3.sd、f4.mean、f4.sd、hubs.mean、hubs.sd、l1.mean、l1.sd、l2.mean、l2.sd、l3.mean、l3.sd、lsc、n1、n2.mean、n2.sd、n3.mean、n3.sd、n4.mean、n4.sd、t1.mean、t1.sd、t2、t3、t4 |
表4
不同变异种群比例准确率比较"
变异比例 | 元数据集 | ||||||
DAcc | DPre | DRec | DF1 | DA1 | DA2 | DA3 | |
5/6 | 43.4 | 42.0 | 36.8 | 44.4 | 42.2 | 33.1 | 37.6 |
4/5 | 41.5 | 41.1 | 35.5 | 43.3 | 42.0 | 33.7 | 37.1 |
3/4 | 43.9 | 43.4 | 36.8 | 44.4 | 42.1 | 34.2 | 36.7 |
2/3 | 43.5 | 42.7 | 37.2 | 44.9 | 42.3 | 33.5 | 37.8 |
1/2 | 43.6 | 43.4 | 36.7 | 44.9 | 42.6 | 33.6 | 37.1 |
1/3 | 42.9 | 43.1 | 37.2 | 44.7 | 42.2 | 34.0 | 37.5 |
1/4 | 43.5 | 43.0 | 37.0 | 44.3 | 42.0 | 33.3 | 37.7 |
1/5 | 42.5 | 42.4 | 35.7 | 44.1 | 42.1 | 33.9 | 37.3 |
1/6 | 42.9 | 43.2 | 36.9 | 44.0 | 41.9 | 33.6 | 37.3 |
表6
准确率比较"
元数据集 | RMA | kNN | RF | LR | LRW | SVR | RFR |
DAcc | 43.6 | 31.4 | 35.7 | 30.3 | 25.7 | 32.3 | 31.7 |
DPre | 43.4 | 29.0 | 36.8 | 29.8 | 19.7 | 31.5 | 28.6 |
DRec | 36.7 | 20.3 | 30.9 | 30.2 | 23.4 | 30.2 | 27.7 |
DF1 | 44.9 | 28.6 | 36.6 | 33.4 | 23.1 | 35.2 | 31.1 |
DA1 | 42.6 | 25.4 | 33.8 | 27.7 | 27.4 | 27.7 | 32.2 |
DA2 | 33.6 | 14.0 | 32.5 | 20.3 | 23.7 | 20.8 | 28.0 |
DA3 | 37.1 | 24.2 | 32.3 | 28.6 | 22.5 | 31.5 | 33.7 |
表7
查准率比较"
元数据集 | RMA | kNN | RF | LR | LRW | SVR | RFR |
DAcc | 33.2 | 21.6 | 22.6 | 7.2 | 15.1 | 5.2 | 19.9 |
DPre | 36.2 | 16.5 | 25.4 | 7.7 | 14.1 | 4.9 | 20.7 |
DRec | 33.1 | 14.7 | 24.8 | 8.3 | 11.5 | 4.4 | 17.5 |
DF1 | 37.7 | 13.4 | 27.3 | 8.2 | 11.7 | 5.4 | 20.1 |
DA1 | 38.1 | 16.4 | 28.1 | 9.0 | 22.9 | 4.8 | 24.9 |
DA2 | 32.9 | 9.8 | 26.3 | 5.6 | 17.2 | 2.7 | 19.7 |
DA3 | 32.4 | 13.1 | 23.1 | 7.2 | 13.7 | 4.5 | 20.4 |
表8
查全率比较"
元数据集 | RMA | kNN | RF | LR | LRW | SVR | RFR |
DAcc | 30.0 | 21.2 | 22.6 | 16.0 | 16.4 | 15.2 | 20.5 |
DPre | 32.6 | 17.1 | 23.7 | 15.7 | 13.1 | 14.3 | 21.8 |
DRec | 29.5 | 16.0 | 22.9 | 16.8 | 14.8 | 14.1 | 19.2 |
DF1 | 32.7 | 14.9 | 23.1 | 15.8 | 16.9 | 14.2 | 22.4 |
DA1 | 38.2 | 20.2 | 28.3 | 18.5 | 22.7 | 17.4 | 24.8 |
DA2 | 31.6 | 12.6 | 26.8 | 13.2 | 18.0 | 13.1 | 20.5 |
DA3 | 29.5 | 16.3 | 22.0 | 14.3 | 13.2 | 14.2 | 21.1 |
表9
F1分数比较"
元数据集 | RMA | kNN | RF | LR | LRW | SVR | RFR |
DAcc | 26.9 | 19.0 | 19.2 | 8.9 | 13.6 | 7.6 | 17.6 |
DPre | 30.5 | 14.8 | 21.4 | 8.8 | 11.6 | 7.1 | 18.8 |
DRec | 27.0 | 13.4 | 20.5 | 9.9 | 10.9 | 6.6 | 16.3 |
DF1 | 30.9 | 12.3 | 21.0 | 9.7 | 12.3 | 7.7 | 19.2 |
DA1 | 34.2 | 16.2 | 24.0 | 10.2 | 20.3 | 7.5 | 21.9 |
DA2 | 28.0 | 9.5 | 23.7 | 6.3 | 15.8 | 4.5 | 16.7 |
DA3 | 27.6 | 13.2 | 19.4 | 8.1 | 12.2 | 6.8 | 17.7 |
1 | ADAM S P, ALEXANDROPOULOS S-A N, PARDALOS P M, et al. No free lunch theorem: a review[M]//DEMETRIOU I C, PARDALOS P M. Approximation and optimization. Cham: Springer, 2019: 57-82. |
2 |
KERSCHKE P , HOOS H H , NEUMANN F , et al. Automated algorithm selection: survey and perspectives[J]. Evolutionary Computation, 2019, 27 (1): 3- 45.
doi: 10.1162/evco_a_00242 |
3 |
BRAZDIL P , GIRAUD-CARRIER C . Metalearning and algorithm selection: progress, state of the art and introduction to the 2018 Special Issue[J]. Machine Learning, 2018, 107 (1): 1- 14.
doi: 10.1007/s10994-017-5692-y |
4 | YANG C, AKIMOTO Y, KIM D W, et al. OBOE: collaborative filtering for AutoML model selection[C]//Proc. of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019: 1173-1183. |
5 | 李睿峰, 许爱强, 孙伟超, 等. 基于元学习的航空电子设备特征选择算法推荐方法[J]. 系统工程与电子技术, 2021, 43 (7): 2011- 2020. |
LI R F , XU A Q , SUN W C , et al. Recommendation method for avionics feature selection algorithm based on meta-learning[J]. Systems Engineering and Electronics, 2021, 43 (7): 2011- 2020. | |
6 |
DIAS L V , MIRANDA P B C , NASCIMENTO A C A , et al. ImageDataset2Vec: an image dataset embedding for algorithm selection[J]. Expert Systems with Applications, 2021, 180, 115053.
doi: 10.1016/j.eswa.2021.115053 |
7 |
KOTLAR M , PUNT M , RADIVOJEVIC Z , et al. Novel meta-features for automated machine learning model selection in anomaly detection[J]. IEEE Access, 2021, 9, 89675- 89687.
doi: 10.1109/ACCESS.2021.3090936 |
8 |
RIVOLLI A , GARCIA L P F , SOARES C , et al. Meta-features for meta-learning[J]. Knowledge-Based Systems, 2022, 240, 108101.
doi: 10.1016/j.knosys.2021.108101 |
9 | GARCIA-SAIZ D , ZORRILLA M . A meta-learning based framework for building algorithm recommenders: an application for educational arena[J]. Journal of Intelligent & Fuzzy Systems, 2017, 32 (2): 1449- 1459. |
10 | GARCIA L P F, LORENA A C, DE-SOUTO M C P, et al. Classifier recommendation using data complexity measures[C]//Proc. of the 24th International Conference on Pattern Recognition, 2018: 874-879. |
11 | CHALE M, BASTIAN N D, WEIR J. Algorithm selection framework for cyber attack detection[C]//Proc. of the 2nd ACM Workshop on Wireless Security and Machine Learning, 2020: 37-42. |
12 | MU T Y, WANG H Z, WANG C N, et al. Auto-CASH: autonomous classification algorithm selection with deep Q-network[EB/OL]. [2022-05-05]. https://arxiv.org/abs/2007.03254v1. |
13 |
LI L , WANG Y , XU Y , et al. Meta-learning based industrial intelligence of feature nearest algorithm selection framework for classification problems[J]. Journal of Manufacturing Systems, 2022, 62, 767- 776.
doi: 10.1016/j.jmsy.2021.03.007 |
14 |
MIRJALILI S . The ant lion optimizer[J]. Advances in Engineering Software, 2015, 83, 80- 98.
doi: 10.1016/j.advengsoft.2015.01.010 |
15 |
ABUALIGAH L , SHEHAB M , ALSHINWAN M , et al. Ant lion optimizer: a comprehensive survey of its variants and applications[J]. Archives of Computational Methods in Engineering, 2021, 28 (3): 1397- 1416.
doi: 10.1007/s11831-020-09420-6 |
16 |
IZADI S , AHMADI M , NIKBAZM R . Network traffic classification using convolutional neural network and ant-lion optimization[J]. Computers and Electrical Engineering, 2022, 101, 108024.
doi: 10.1016/j.compeleceng.2022.108024 |
17 |
NIU G Q , LI X Y , WAN X , et al. Dynamic optimization of wastewater treatment process based on novel multi-objective ant lion optimization and deep learning algorithm[J]. Journal of Cleaner Production, 2022, 345, 131140.
doi: 10.1016/j.jclepro.2022.131140 |
18 | MAJJI R , NALINIPRIYA G , VIDYADHARI CH , et al. Jaya ant lion optimization-driven deep recurrent neural network for cancer classification using gene expression data[J]. Medical & Biological Engineering & Computing, 2021, 59, 1005- 1021. |
19 |
曾子林, 张宏军, 张睿, 等. 基于元学习思想的算法选择问题综述[J]. 控制与决策, 2014, 29 (6): 961- 968.
doi: 10.13195/j.kzyjc.2013.1297 |
ZENG Z L , ZHANG H J , ZHANG R , et al. Summary of algorithm selection problem based on meta-learning[J]. Control and Decision, 2014, 29 (6): 961- 968.
doi: 10.13195/j.kzyjc.2013.1297 |
|
20 |
KHAN I , ZHANG X , MOBASHAR R , et al. A literature survey and empirical study of meta-learning for classifier selection[J]. IEEE Access, 2020, 8, 10262- 10281.
doi: 10.1109/ACCESS.2020.2964726 |
21 | BALTE A , PISE N , KULKARNI P . Meta-learning with landmarking: a survey[J]. International Journal of Computer Applications, 2014, 105 (8): 47- 51. |
22 | LORENA A C, GARCIA L P F, LEHMANN J, et al. How complex is your classification problem? A survey on measuring classification complexity[EB/OL]. [2022-05-05]. https://arxiv.org/abs/1808.03591. |
23 | 李郅琴, 杜建强, 聂斌, 等. 特征选择方法综述[J]. 计算机工程与应用, 2019, 55 (24): 10- 19. |
LI Z Q , DU J Q , NIE B , et al. Summary of feature selection methods[J]. Computer Engineering and Applications, 2019, 55 (24): 10- 19. | |
24 |
LIU Y , QIN W , ZHENG Q B , et al. An interpretable feature selection based on particle swarm optimization[J]. IEICE Transactions on Information and Systems, 2022, E105.D (8): 1495- 1500.
doi: 10.1587/transinf.2021EDL8095 |
25 | DUA D, GRAFF C. UCI machine learning repository[EB/OL]. [2022-03-19] http://archive.ics.uci.edu/ml. |
26 | ALCALA-FDEZ J , FERNANDEZ A , LUENGO J , et al. Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework[J]. Journal of Multiple-Valued Logic & Soft Computing, 2011, 17, 255- 287. |
27 |
KOOPERBERG C . StatLib: an archive for statistical software, datasets, and information[J]. The American Statistician, 1997, 51 (1): 98.
doi: 10.2307/2684710 |
28 | ALCOBACA E , SIQUEIRA F , RIVOLLI A , et al. MFE: towards reproducible meta-feature extraction[J]. Journal of Machine Learning Research, 2020, 21 (1): 4503- 4507. |
29 | PEDREGOSA F , VAROQUAUX G , GRAMFORT A , et al. Scikit-learn: machine learning in python[J]. Journal of Machine Learning Research, 2011, 12, 2825- 2830. |
30 |
BRAZDIL P B , SOARES C . Ranking learning algorithms: using IBL and meta-learning on accuracy and time results[J]. Machine Learning, 2003, 50, 251- 277.
doi: 10.1023/A:1021713901879 |
31 | 李洪奇, 徐青松, 朱丽萍, 等. 基于数据集相似性的分类算法推荐[J]. 计算机应用与软件, 2016, 33 (8): 62- 66. |
LI H Q , XU Q S , ZHU L P , et al. Classification algorithms recommendation based on dataset similarity[J]. Computer Applications and Software, 2016, 33 (8): 62- 66. |
[1] | 赵晓枫, 牛家辉, 刘春桐, 夏玉婷. 基于三维注意力与混合卷积的高光谱图像分类[J]. 系统工程与电子技术, 2023, 45(9): 2673-2680. |
[2] | 刘文波, 姚翼荣, 张弓, 胡文. 超维计算概念、应用及研究进展[J]. 系统工程与电子技术, 2023, 45(7): 1938-1956. |
[3] | 崔天舒, 王栋, 黄振. 面向空间认知通信的轻量化网络自动调制分类方法[J]. 系统工程与电子技术, 2023, 45(7): 2220-2226. |
[4] | 杨丽花, 任露露, 呼博, 邵永琪, 聂倩. 基于元学习的时变信道估计方法[J]. 系统工程与电子技术, 2023, 45(6): 1872-1879. |
[5] | 张晔, 侯毅, 欧阳克威, 周石琳. 单变量序列数据分类方法综述[J]. 系统工程与电子技术, 2023, 45(2): 313-335. |
[6] | 刘智星, 全英汇, 沙明辉, 方文, 高霞, 邢孟道. 载频-重频联合捷变雷达目标参数估计方法[J]. 系统工程与电子技术, 2023, 45(2): 401-406. |
[7] | 宋波涛, 许广亮. 基于LSTM与1DCNN的导弹轨迹预测方法[J]. 系统工程与电子技术, 2023, 45(2): 504-512. |
[8] | 龚佩, 李天昀, 章昕亮, 寸陈韬. 利用联合特征参数的卫星单-混信号调制识别[J]. 系统工程与电子技术, 2023, 45(2): 589-596. |
[9] | 王峻洲, 王华伟, 侯召国. 基于相似体系的民机结构超手册维修案例分析[J]. 系统工程与电子技术, 2022, 44(9): 2978-2985. |
[10] | 郭军成, 万刚, 胡欣杰, 严发宝, 王帅. 太阳射电频谱爆发识别的元学习方法[J]. 系统工程与电子技术, 2022, 44(8): 2410-2418. |
[11] | 童莹萍, 全英汇, 冯伟, 邢孟道. 基于空谱信息协同与Gram-Schmidt变换的多源遥感图像融合方法[J]. 系统工程与电子技术, 2022, 44(7): 2074-2083. |
[12] | 樊成, 王布宏, 田继伟. 基于多任务学习图卷积模型的航空网络节点分类[J]. 系统工程与电子技术, 2022, 44(7): 2341-2349. |
[13] | 曲志昱, 孙萌, 戴幻尧. 基于共形阵的角度和极化信息联合估计算法[J]. 系统工程与电子技术, 2022, 44(6): 1798-1804. |
[14] | 孙晶明, 虞盛康, 孙俊. 基于元学习的雷达小样本目标识别方法及改进[J]. 系统工程与电子技术, 2022, 44(6): 1839-1845. |
[15] | 李海, 白锦, 孙研, 任嘉伟. 基于修正小波变换插值-TAN的雷达降水粒子分类[J]. 系统工程与电子技术, 2022, 44(5): 1527-1535. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||