1 |
GHAMISI P , RASTI B , YOKOYA N , et al. Multisource and multitemporal data fusion in remote sensing: a comprehensive review of the state of the art[J]. IEEE Geoscience and Remote Sensing Magazine, 2019, 7 (1): 6- 39.
doi: 10.1109/MGRS.2018.2890023
|
2 |
ZHU Q Q , DENG W H , ZHENG Z , et al. A spectral-spatial-dependent global learning framework for insufficient and imbalanced hyperspectral image classification[J]. IEEE Trans.on Cybernetics, 2021, 52 (11): 11709- 11723.
|
3 |
AHMAD M, SHABBIR S, RAZA R A, et al. Hyperspectral image classification: artifacts of dimension reduction on hybrid CNN[C]//Proc. of the Computer Vision and Pattern Recognition Conference, 2021.
|
4 |
张朝阳, 程海峰, 陈朝辉, 等. 高光谱遥感的发展及其对军事装备的威胁[J]. 光电技术应用, 2008, (1): 10- 12.
doi: 10.3969/j.issn.1673-1255.2008.01.003
|
|
ZHANG C Y , CHENG H F , CHEN C H , et al. The development of hyperspectral remote sensing and its threatening to military equipments[J]. Electro-optic Technology Application, 2008, (1): 10- 12.
doi: 10.3969/j.issn.1673-1255.2008.01.003
|
5 |
YANG X G , YU Y . Estimating soil salinity under various moisture conditions: an experimental study[J]. IEEE Trans.on Geoscience and Remote Sensing, 2017, 55 (5): 2525- 2533.
doi: 10.1109/TGRS.2016.2646420
|
6 |
GOVENDER M , CHETTY K , BULCOCK H . A review of hyperspectral remote sensing and its application in vegetation and water resource studies[J]. Water SA, 2007, 33 (2): 145- 151.
|
7 |
MOLERO J M , GARZON E M , GARCIA I , et al. Efficient implementation of hyperspectral anomaly detection techniques on GPUs and multicore processors[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7 (6): 2256- 2266.
doi: 10.1109/JSTARS.2014.2328614
|
8 |
SUMARSONO A , DU Q . Low-rank subspace representation for estimating the number of signal subspaces in hyperspectral imagery[J]. IEEE Trans.on Geoscience and Remote Sensing, 2015, 53 (11): 6286- 6292.
doi: 10.1109/TGRS.2015.2438079
|
9 |
CAMPSVALLS G , GOMEZCHOVA L , MUNOZMARI J , et al. Composite kernels for hyperspectral image classification[J]. IEEE Geoscience Remote Sensing Letters, 2006, 105 (1): 23- 33.
|
10 |
LI J , HUANG X , GAMBA P , et al. Multiple feature learning for hyperspectral image classification[J]. IEEE Trans.on Geoscience and Remote Sensing, 2015, 53 (3): 1592- 1606.
doi: 10.1109/TGRS.2014.2345739
|
11 |
CIOTOLA M , VITALE S , MAZZA A , et al. Pansharpening by convolutional neural networks in the full resolution framework[J]. IEEE Trans.on Geoscience and Remote Sensing, 2022, 60, 5408717.
|
12 |
GUO M H , XU T X , LIU J J , et al. Attention mechanisms in computer vision: a survey[J]. Computational Visual Media, 2022, 8 (3): 331- 368.
doi: 10.1007/s41095-022-0271-y
|
13 |
HU W , HUANG Y Y , LI W , et al. Deep convolutional neural networks for hyperspectral image classification[J]. Journal of Sensors, 2015, 2015, 258619.
|
14 |
BOULCH A, TROUVE P, KOENIGUER E, et al. Learning speckle suppression in SAR images without ground truth: application to Sentinel-1 time-series[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2018: 2366-2369.
|
15 |
MOU L , GHAMISI P , ZHU X X . Deep recurrent neural networks for hyperspectral image classification[J]. IEEE Trans.on Geoscience and Remote Sensing, 2017, 55 (7): 3639- 3655.
doi: 10.1109/TGRS.2016.2636241
|
16 |
MAKANTASIS K, KARANTZALOS K, DOULAMIS A, et al. Deep supervised learning for hyperspectral data classification through convolutional neural networks[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2015: 4959-4962.
|
17 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778
|
18 |
SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2015.
|
19 |
韩彦岭, 崔鹏霞, 杨树瑚, 等. 基于残差网络特征融合的高光谱图像分类[J]. 国土资源遥感, 2021, 33 (2): 11- 19.
|
|
HAN Y L , CUI P X , YANG S H , et al. Classification of hyperspectral image based on feature fusion of residual network[J]. Remote Sensing for Land and Resources, 2021, 33 (2): 11- 19.
|
20 |
王溢琴, 董云云, 刘慧玲. 基于GoogLeNet和空间谱变换的高光谱图像超分辨率方法[J]. 光学技术, 2022, 48 (1): 93- 101.
|
|
WANG Y Q , DONG Y Y , LIU H L . Super-resolution method of hyperspectral image based on GoogLeNet and spatial spectrum transformation[J]. Optical Technique, 2022, 48 (1): 93- 101.
|
21 |
HAMIDA A B , BENOIT A , LAMBERT P , et al. 3-D deep learning approach for remote sensing image classification[J]. IEEE Trans.on Geoscience and Remote Sensing, 2018, 56 (8): 4420- 4434.
doi: 10.1109/TGRS.2018.2818945
|
22 |
CHEN Y S , JIANG H L , LI C Y , et al. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[J]. IEEE Trans.on Geoscience and Remote Sensing, 2016, 54 (10): 6232- 6251.
doi: 10.1109/TGRS.2016.2584107
|
23 |
ROY S K , KRISHNA G , DUBEY S R , et al. HybridSN: exploring 3D-2D CNN feature hierarchy for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17 (2): 277- 281.
|
24 |
张祥东, 王腾军, 朱劭俊, 等. 基于扩张卷积注意力神经网络的高光谱图像分类[J]. 光学学报, 2021, 41 (3): 49- 59.
|
|
ZHANG X D , WANG T J , ZHU S J , et al. Hyperspectral image classification based on dilated convolutional attention neural network[J]. Acta Optica Sinica, 2021, 41 (3): 49- 59.
|
25 |
DING Y , ZHAO X F , ZHANG Z L , et al. Graph sample and aggregate-attention network for hyperspectral image classification[J]. IEEE Geoscience Remote Sensing Letters, 2021, 19, 5504205.
|
26 |
LIU Q C , XIAO L , YANG J X , et al. CNN-enhanced graph convolutional network with pixel and superpixel level feature fusion for hyperspectral image classification[J]. IEEE Trans. on Geoscience and Remote Sensing, 2021, 59 (10): 8657- 8671.
|
27 |
HONG D F , HAN Z , YAO J , et al. SpectralFormer: rethinking hyperspectral image classification with Transformers[J]. IEEE Trans.on Geoscience and Remote Sensing, 2022, 60 (5518615)
|
28 |
HU J , SHEN L , ALBANIE S , et al. Squeeze-and-excitation networks[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2020, 42 (8): 2011- 2023.
|
29 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proc. of the European Conference on Computer Vision, 2018.
|
30 |
HAMIDA A B , BENOIT A , LAMBERT P , et al. 3-D deep learning approach for remote sensing image classification[J]. IEEE Trans.on Geoscience and Remote Sensing, 2018, 56 (8): 4420- 4434.
|
31 |
HE M Y, BO L, CHEN H H. Multi-scale 3D deep convolutional neural network for hyperspectral image classification[C]//Proc. of the IEEE International Conference on Image Processing, 2018: 3904-3908.
|
32 |
SUN H , ZHENG X T , LU X Q , et al. Spectral-spatial attention networks for hyperspectral image classification[J]. Remote Sensing, 2019, 11 (8): 3232- 3245.
|