系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (8): 2623-2633.doi: 10.12305/j.issn.1001-506X.2023.08.38

• 可靠性 • 上一篇    下一篇

基于核自构建-高斯过程回归的锂离子电池剩余使用寿命预测

张然, 刘天宇, 金光   

  1. 国防科技大学系统工程学院, 湖南 长沙 410073
  • 收稿日期:2022-09-14 出版日期:2023-07-25 发布日期:2023-08-03
  • 通讯作者: 刘天宇
  • 作者简介:张然(1992—), 女, 博士研究生, 主要研究方向为寿命预测、健康管理
    刘天宇(1989—), 男, 副教授, 博士, 主要研究方向为系统可靠性评估、装备试验鉴定
    金光(1973—), 男, 研究员, 博士, 主要研究方向为寿命预测与健康管理、系统试验与评估、数据分析与建模
  • 基金资助:
    国家自然科学基金青年基金(72001210);湖南省科技创新计划(2021RC2074);湖南省科技创新计划(2022RC1243)

Remaining useful life prediction of lithium-ion batteries based on Gaussian process regression with self-constructed kernel

Ran ZHANG, Tianyu LIU, Guang JIN   

  1. School of System Engineering, National University of Defense Technology, Changsha 410073, China
  • Received:2022-09-14 Online:2023-07-25 Published:2023-08-03
  • Contact: Tianyu LIU

摘要:

高斯过程回归是锂离子电池剩余使用寿命的有效预测方法之一,其中核函数的选择对预测结果有着重要影响。对此,提出了一种自回归核自构建高斯过程回归的锂离子电池剩余寿命预测框架,可结合同型号电池的历史容量退化规律,自动构建出合适的组合核函数。通过与不同的机器学习方法及不同核函数比较,所提方法可在电池退化早期做出长期且准确的电池健康状态退化趋势预测,预测寿命均方根误差小于1%,相对误差小于6%,置信区间也更为集中,证明了所提方法能够有效提高电池剩余使用寿命的长期预测精度。

关键词: 高斯过程回归, 组合核函数, 剩余使用寿命, 锂离子电池

Abstract:

Gaussian process regression(GPR) is one of the effective methods to predict the remaining useful life(RUL) of lithium-ion batteries. At the same time, the choice of kernel function in GPR model has an important influence on the prediction result. In this regard, a GPR with self-constructed kernel method is proposed. Using the historical capacity data of the same type of batteries, the appropriate combination kernel function is automatically constructed to describe degradation trends. Compared with different machine learning methods and different kernel functions, the proposed method can make long-term and accurate prediction of battery health degradation trend in the early stage of battery degradation. The root mean square error is less than 1% of prediction results, meanwhile the relative error is less than 6%. The confidence intervals for the predicted results are more concentrated. It shows that the proposed method can effectively improve the long-term prediction accuracy of battery RUL.

Key words: Gaussian process regression, combinational kernel function, remaining useful life (RUL), lithium-ion battery

中图分类号: