系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (8): 2623-2633.doi: 10.12305/j.issn.1001-506X.2023.08.38
张然, 刘天宇, 金光
收稿日期:
2022-09-14
出版日期:
2023-07-25
发布日期:
2023-08-03
通讯作者:
刘天宇
作者简介:
张然(1992—), 女, 博士研究生, 主要研究方向为寿命预测、健康管理基金资助:
Ran ZHANG, Tianyu LIU, Guang JIN
Received:
2022-09-14
Online:
2023-07-25
Published:
2023-08-03
Contact:
Tianyu LIU
摘要:
高斯过程回归是锂离子电池剩余使用寿命的有效预测方法之一,其中核函数的选择对预测结果有着重要影响。对此,提出了一种自回归核自构建高斯过程回归的锂离子电池剩余寿命预测框架,可结合同型号电池的历史容量退化规律,自动构建出合适的组合核函数。通过与不同的机器学习方法及不同核函数比较,所提方法可在电池退化早期做出长期且准确的电池健康状态退化趋势预测,预测寿命均方根误差小于1%,相对误差小于6%,置信区间也更为集中,证明了所提方法能够有效提高电池剩余使用寿命的长期预测精度。
中图分类号:
张然, 刘天宇, 金光. 基于核自构建-高斯过程回归的锂离子电池剩余使用寿命预测[J]. 系统工程与电子技术, 2023, 45(8): 2623-2633.
Ran ZHANG, Tianyu LIU, Guang JIN. Remaining useful life prediction of lithium-ion batteries based on Gaussian process regression with self-constructed kernel[J]. Systems Engineering and Electronics, 2023, 45(8): 2623-2633.
表1
常用核函数"
类别 | 名称 | 核函数形式 |
全局核 | 常数核 | |
白噪声核 | ||
线性核 | ||
多项式核 | ||
局部核 | 高斯核 | |
有理二次核 | ||
周期核 |
表2
核函数构建过程"
核函数构建过程 | NLL | BIC | |
K0 | - | - | |
K1 | -1 665.837 7 | -3 316.959 6 | |
K2 | -1 787.786 8 | -3 551.047 2 | |
K3 | -1 801.619 3 | -3 568.901 7 | |
K4 | -1 806.524 3 | -3 568.901 1 |
表3
模型组合核函数超参数更新结果"
电池序号 | SP | LIN(x(1), x′(1)) | LIN(x(5), x′(5)) | SE(x(3), x′(3)) | WN(x, x′) | ||||||
c1* | σf1* | c2* | σf1* | l* | σf3* | σf4* | |||||
Batt#1 | 3 000 | -11.903 4 | -0.884 8 | -0.086 7 | -0.904 8 | 14.806 8 | -0.894 8 | -7.993 8 | |||
4 000 | -6.242 4 | -1.160 0 | -3.919 2 | -1.180 0 | 0.799 4 | -1.170 0 | -7.687 5 | ||||
5 000 | -2.580 6 | -0.883 0 | -2.271 6 | -0.903 0 | 0.694 4 | -0.893 0 | -7.568 8 | ||||
Batt#3 | 3 000 | -19.962 7 | -0.996 8 | -0.046 2 | -1.016 8 | 6.273 5 | -1.006 8 | -7.839 7 | |||
4 000 | -16.998 2 | -0.970 5 | -0.056 0 | -0.990 5 | 9.140 4 | -0.980 5 | -7.634 5 | ||||
5 000 | -14.827 2 | -0.148 2 | -0.063 8 | -0.168 2 | 8.791 6 | -0.158 2 | -7.694 7 | ||||
Batt#7 | 3 000 | -68.812 8 | -1.134 2 | -0.017 5 | -1.154 2 | 25.611 8 | -1.144 2 | -8.102 0 | |||
4 000 | -188.949 9 | -2.070 3 | -1.228 2 | -2.090 3 | 0.451 1 | -2.080 3 | -8.485 4 | ||||
5 000 | -79.739 9 | -1.687 3 | -0.654 3 | -1.707 3 | 0.753 6 | -1.697 3 | -7.510 1 |
表4
RUL预测误差分析"
电池序号 | SP | RUL | MAE | RMSE | AE |
Batt#1 | 3 000 | 3 300 | 0.002 2 | 0.002 8 | 0 |
4 000 | 2 500 | 0.003 3 | 0.004 4 | 200 | |
5 000 | 1 700 | 0.007 3 | 0.008 4 | 400 AE | |
Batt#3 | 3 000 | 3 600 | 0.004 7 | 0.005 6 | 400 |
4 000 | 3 000 | 0.000 8 | 0.001 0 | 0 | |
5 000 | 2 100 | 0.001 7 | 0.001 9 | 100 | |
Batt#7 | 3 000 | - | 0.002 3 | 0.002 7 | - |
4 000 | - | 0.006 5 | 0.007 4 | - | |
5 000 | - | 0.002 2 | 0.002 8 | - |
表6
不同核函数GPR模型误差分析"
电池序号 | 核结构 | SP | |||||||
3 000 | 4 000 | 5 000 | |||||||
MAE | RMSE | MAE | RMSE | MAE | RMSE | ||||
Batt#1 | Kbest* | 0.002 2 | 0.002 8 | 0.003 3 | 0.004 4 | 0.007 3 | 0.008 4 | ||
SEARD | 0.015 3 | 0.018 2 | 0.002 2 | 0.002 8 | 0.006 0 | 0.006 9 | |||
Batt#3 | Kbest* | 0.004 7 | 0.005 6 | 0.000 8 | 0.001 0 | 0.001 7 | 0.001 9 | ||
SEARD | 0.028 3 | 0.036 7 | 0.008 6 | 0.011 1 | 0.000 9 | 0.001 0 | |||
Batt#7 | Kbest* | 0.002 3 | 0.002 7 | 0.006 5 | 0.007 4 | 0.002 2 | 0.002 8 | ||
SEARD | 0.341 6 | 0.555 1 | 0.021 7 | 0.027 2 | 0.002 0 | 0.002 6 |
1 |
FRIEDRICH V B , TOBIAS M . A review on methods for state of health forecasting of lithium-ion batteries applicable in real-world operational conditions[J]. Journal of Energy Storage, 2023, 57, 105978.
doi: 10.1016/j.est.2022.105978 |
2 | 司小胜, 胡昌华. 数据驱动的设备剩余寿命预测理论及应用[M]. 北京: 国防工业出版社, 2016. |
SI X S , HU C H . Data-driven remaining useful life prediction theory and applications for equipment[M]. Beijing: National Defence Industry Press, 2016. | |
3 |
LI Y , LIU K L , FOLEY A M , et al. Data-driven health estimation and lifetime prediction of lithium-ion batteries: a review[J]. Renewable and Sustainable Energy Reviews, 2019, 113, 109254.
doi: 10.1016/j.rser.2019.109254 |
4 | AN D , CHOI J H , KIM N H . Prognostics 101: a tutorial for particle filter-based prognostics algorithm using Matlab[J]. Reliability Engineering & System Safety, 2013, 115, 161- 169. |
5 |
WU T Z , LIU S Z , WANG Z K , et al. SOC and SOH joint estimation of lithium-ion battery based on improved particle filter algorithm[J]. Journal of Electrical Engineering and Technology, 2022, 17, 307- 317.
doi: 10.1007/s42835-021-00861-y |
6 | LI J F , WANG D F , DENG L , et al. Aging modes analysis and physical parameter identification based on a simplified electrochemical model for lithium-ion batteries[J]. The Journal of Energy Storage, 2020, 31 (6): 101538. |
7 |
PRASAD G K , RAHN C D . Model based identification of aging parameters in lithium-ion batteries[J]. Journal of Power Sources, 2013, 232, 79- 85.
doi: 10.1016/j.jpowsour.2013.01.041 |
8 |
KHAKI B , DAS P . An equivalent circuit model for vanadium redox batteries via hybrid extended kalman filter and particle filter methods[J]. Journal of Energy Storage, 2021, 39, 102587.
doi: 10.1016/j.est.2021.102587 |
9 | HU C , JAIN G , TAMIRISA P , et al. Method for estimating capacity and predicting remaining useful life of lithium-ion battery[J]. Applied Energy, 2014, 126 (14): 182- 189. |
10 |
HU C , YE H , JAIN G , et al. Remaining useful life assessment of lithium-ion batteries in implantable medical devices[J]. Journal of Power Sources, 2018, 375, 118- 130.
doi: 10.1016/j.jpowsour.2017.11.056 |
11 |
LIU D T , LUO Y , LIU J , et al. Lithium-ion battery remaining useful life estimation based on fusion nonlinear degradation AR model and RPF algorithm[J]. Neural Computer and Application, 2014, 25 (3-4): 557- 572.
doi: 10.1007/s00521-013-1520-x |
12 | ZHOU Y P , HUANG M H . Lithium-ion batteries remaining useful life prediction based on a mixture of empirical mode decomposition and ARIMA model[J]. Microelectronics Reliability, 2016, 65 (10): 265- 273. |
13 | ZHANG J S , JIANG Y C , LI X , et al. An adaptive remaining useful life prediction approach for single battery with unlabeled small sample data and parameter uncertainty[J]. Reliability Engineering & System Safety, 2022, 222, 108357. |
14 |
XIAO B , XIAO B , LIU L S . Rapid measurement method for lithium-ion battery state of health estimation based on least squares support vector regression[J]. International Journal of Energy Research, 2021, 45 (4): 5695- 5709.
doi: 10.1002/er.6194 |
15 | LI Y X, SONG L, YI R Q, et al. An RUL prediction approach for lithium-ion batteries based on FIG and SVM with multi-kernel[C]//Proc. of the 7th Asia Conference on Power and Electrical Engineering, 2022: 2101-2105. |
16 |
WU J , ZHANG C B , CHEN Z H . An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks[J]. Applied Energy, 2016, 173, 134- 140.
doi: 10.1016/j.apenergy.2016.04.057 |
17 |
CHEN X , WEN J P , LI X H , et al. SOH prediction of lithium battery based on IC curve feature and BP neural network[J]. Energy, 2022, 261, 125234.
doi: 10.1016/j.energy.2022.125234 |
18 |
LIN H Y , KANG L Y , XIE D , et al. Online state-of-health estimation of lithium-ion battery based on incremental capacity curve and BP neural network[J]. Batteries, 2022, 8 (4): 29- 48.
doi: 10.3390/batteries8040029 |
19 |
ZHAO J H , ZHU Y , ZHANG B , et al. Method of predicting SOH and RUL of lithium-ion battery based on the combination of LSTM and GPR[J]. Sustainability, 2022, 14 (19): 11865.
doi: 10.3390/su141911865 |
20 |
UGUR Y , ABDULLAH T A , HIKMET Y . A novel method for SOH prediction of batteries based on stacked LSTM with quick charge data[J]. Applied Artificial Intelligence, 2021, 35 (6): 421- 439.
doi: 10.1080/08839514.2021.1901033 |
21 | XIA F , WANG K G , CHEN J J . State-of-health prediction for lithium-ion batteries based on complete ensemble empirical mode decomposition with adaptive noise-gate recurrent unit fusion model[J]. Energy Technology, 2022, 10 (4): 2194- 4288. |
22 |
WU J , CHEN J X , FENG X , et al. State of health estimation of lithium-ion batteries using autoencoders and ensemble learning[J]. Journal of Energy Storage, 2022, 55, 105708.
doi: 10.1016/j.est.2022.105708 |
23 | ZHANG Y Q, ZHANG H F, TIAN Z W. The application of Gaussian process regression in state of health prediction of lithium-ion batteries[C]//Proc. of the IEEE Advanced Information Technology, Electronic and Automation Control Conference, 2018: 515-519. |
24 |
刘月峰, 赵光权, 彭喜元. 多核相关向量机优化模型的锂电池剩余寿命预测方法[J]. 电子学报, 2019, 47 (6): 1285- 1292.
doi: 10.3969/j.issn.0372-2112.2019.06.015 |
LIU Y F , ZHAO G Q , PENG X Y . A lithium-ion battery remaining using life prediction method based on multi-kernel relevance vector machine optimized model[J]. Acta Electronica Sinica, 2019, 47 (6): 1285- 1292.
doi: 10.3969/j.issn.0372-2112.2019.06.015 |
|
25 |
韩云飞, 谢佳, 蔡涛, 等. 结合高斯过程回归与特征选择的锂离子电池容量估计方法[J]. 储能科学与技术, 2021, 10 (4): 1432- 1438.
doi: 10.19799/j.cnki.2095-4239.2021.0109 |
HAN Y F , XIE J , CAI T , et al. Capacity estimation of lithium-ion batteries based on Gaussian process regression and feature selection[J]. Energy Storage Science and Technology, 2021, 10 (4): 1432- 1438.
doi: 10.19799/j.cnki.2095-4239.2021.0109 |
|
26 |
MA G J , WANG Z D , LIU W B , et al. A two-stage integrated method for early prediction of remaining useful life of lithium-ion batteries[J]. Knowledge-Based Systems, 2023, 259, 110012.
doi: 10.1016/j.knosys.2022.110012 |
27 | 吕佳朋, 史贤俊, 王康. 基于高斯过程回归的电池容量预测模型[J]. 电子测量技术, 2020, 43 (3): 43- 48. |
LYU J P , SHI X J , WANG K . Battery capacity prediction model based on Gaussian process regression[J]. Electronic Measurement Technology, 2020, 43 (3): 43- 48. | |
28 |
LIU K L , LI Y , HU X S , et al. Gaussian process regression with automatic relevance determination kernel for calendar aging prediction of lithium-ion batteries[J]. IEEE Trans.on Industrial Informatics, 2020, 16 (6): 3767- 3777.
doi: 10.1109/TII.2019.2941747 |
29 | 吕佳朋, 史贤俊. 基于AdaBoost的GPR预测算法研究及应用[J]. 电光与控制, 2020, 27 (6): 43-46, 62 |
LYU J P , SHI X J . Research of GPR prediction algorithm based on AdaBoost and its application[J]. Electronics Optics & Control, 2020, 27 (6): 43-46, 62 | |
30 |
GONG D L , GAO Y , KOU Y L , et al. State of health estimation for lithium-ion battery based on energy features[J]. Energy, 2022, 257, 124812.
doi: 10.1016/j.energy.2022.124812 |
31 |
WANG J W , DENG Z W , YU T , et al. State of health estimation based on modified Gaussian process regression for lithium-ion batteries[J]. Journal of Energy Storage, 2022, 51, 104512.
doi: 10.1016/j.est.2022.104512 |
32 |
WEI M , YE M , WANG Q , et al. A data-driven approach with error compensation and uncertainty quantification for remaining useful life prediction of lithium-ion battery[J]. International Journal of Energy Research, 2022, 46 (14): 20121- 20135.
doi: 10.1002/er.8321 |
33 | ZHANG Y B , JIA Y X , QIU G D , et al. Stochastic filtering residual useful life prediction model based on metal concentration gradient in lubricant[J]. Systems Engineering-Theory & Practice, 2014, 34 (6): 35- 42. |
34 | RASMUSSEN C E , WILLIAMS C . Gaussian processes for machine learning[M]. Boston: MIT Press, 2005. |
35 | GHAHRAMANI Z . The automatic statistician[J]. Significance, 2015, 12 (1): 14- 15. |
36 | BIRKL C. Oxford battery degradation dataset 1[EB/OL]. [2022-09-05]. https://ora.ox.ac.uk/objects/uuid:03ba4b01-cfed-46d3-9b1a-7d4a7bdf6fac. |
[1] | 黄林, 龚立, 姜伟, 王康勃. 基于多源信息融合与HMM的剩余寿命预测[J]. 系统工程与电子技术, 2022, 44(5): 1747-1756. |
[2] | 王高岳, 张慧君, 陈贤, 李昊. 基于高斯过程回归的大气进入段航天器飞行能力预测方法[J]. 系统工程与电子技术, 2020, 42(10): 2334-2339. |
[3] | 孟阳, 高社生, 王维. 基于高斯过程回归的平方根UPF算法[J]. 系统工程与电子技术, 2015, 37(12): 2817-2822. |
[4] | 魏喜庆,宋申民,张保群. 基于无模型无迹粒子滤波的编队卫星相对运动估计[J]. Journal of Systems Engineering and Electronics, 2012, 34(6): 1215-1219. |
[5] | 李鹏,宋申民,陈兴林,段广仁. 联合高斯回归的平方根UKF方法[J]. Journal of Systems Engineering and Electronics, 2010, 32(6): 1281-1285. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||