1 |
LIU Z Y , ZHANG L , DING Z . Exploiting bi-directional channel reciprocity in deep learning for low rate massive MIMO CSI feedback[J]. IEEE Wireless Communications Letters, 2019, 8 (3): 889- 892.
doi: 10.1109/LWC.2019.2898662
|
2 |
SHEN W Q , DAI L L , LI Y , et al. Channel feedback codebook design for millimeter-wave massive MIMO systems relying on lens antenna array[J]. IEEE Wireless Communications Letters, 2018, 7 (5): 736- 739.
doi: 10.1109/LWC.2018.2818130
|
3 |
LIN Y P, WU P H, PHOONG S M. Statistics-aided codebook designs for limited feedback beamforming systems over millimeterwave channels[C]//Proc. of the IEEE 23rd International Conference on Digital Signal Processing, 2018.
|
4 |
SHEN W Q , DAI L L , ZHANG Y , et al. On the performance of channel-statistics-based codebook for massive MIMO channel feedback[J]. IEEE Trans.on Vehicular Technology, 2017, 66 (8): 7553- 7557.
doi: 10.1109/TVT.2017.2656908
|
5 |
ADHIKARY A , NAM J , AHN J Y , et al. Joint spatial division and multiplexing—the large-scale array regime[J]. IEEE Trans.on Information Theory, 2013, 59 (10): 6441- 6463.
doi: 10.1109/TIT.2013.2269476
|
6 |
JIANG Z , MOLISCH A F , CAIRE G , et al. Achievable rates of FDD massive MIMO systems with spatial channel correlation[J]. IEEE Trans.on Wireless Communications, 2015, 14 (5): 2868- 2882.
doi: 10.1109/TWC.2015.2396058
|
7 |
ADHIKARY A , Al SAFADI E , SAMIMI M K , et al. Joint spatial division and multiplexing for mm-wave channels[J]. IEEE Journal on Selected Areas in Communications, 2014, 32 (6): 1239- 1255.
doi: 10.1109/JSAC.2014.2328173
|
8 |
JOUNG J , KURNIAWAN E , SUN S . Channel correlation mo-deling and its application to massive MIMO channel feedback reduction[J]. IEEE Trans.on Vehicular Technology, 2016, 66 (5): 3787- 3797.
|
9 |
CUI Y M, FANG Y L. Research on PCA data dimension reduction algorithm based on entropy weight method[C]//Proc. of the 2nd International Conference on Machine Learning, Big Data and Business Intelligence, 2020: 392-396.
|
10 |
LIU J E, WANG K, LIU H B. Distributed compressed sensing of doubly selective channel in massive MIMO systems[C]//Proc. of the World Conference on Computing and Communication Technologies, 2021: 21-25.
|
11 |
GE Y, ZENG Z, ZHANG T, et al. Spatio-temporalcorrelated channel feedback for massive MIMO systems[C]//Proc. of the IEEE/CIC International Conference on Communications in China, 2018.
|
12 |
WEN C K , SHIH W T , JIN S . Deep learning for massive MIMO CSI feedback[J]. IEEE Wireless Communications Letters, 2018, 7 (5): 748- 751.
doi: 10.1109/LWC.2018.2818160
|
13 |
LI X Y , WU H M . Spatio-temporal representation with deep neural recurrent network in MIMO CSI feedback[J]. IEEE Wireless Communications Letters, 2020, 9 (5): 653- 657.
doi: 10.1109/LWC.2020.2964550
|
14 |
GUO J , WEN C K , JIN S , et al. Convolutional neural network-based multiple-rate compressive sensing for massive MIMO CSI feedback: design, simulation, and analysis[J]. IEEE Trans.on Wireless Communications, 2020, 19 (4): 2827- 2840.
doi: 10.1109/TWC.2020.2968430
|
15 |
WANG Z , LI Y , WANG C , et al. A-OMP: an adaptive OMP algorithm for underwater acoustic OFDM channel estimation[J]. IEEE Wireless Communications Letters, 2021, 10 (8): 1761- 1765.
doi: 10.1109/LWC.2021.3079225
|
16 |
ZHANG Z Y , CAI X , LI C G , et al. One-bit quantized massive MIMO detection based on variational approximate message passing[J]. IEEE Trans.on Signal Processing, 2017, 66 (9): 2358- 2373.
|
17 |
LIU T T , XING L , SUN Z G . Study on convergence of plug-and-play ISTA with adaptive-kernel denoisers[J]. IEEE Signal Processing Letters, 2021, 28, 1918- 1922.
doi: 10.1109/LSP.2021.3111594
|
18 |
HU J, SHEN L, SUN G. Squeeze-and-Excitation networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
|
19 |
LOHIT S , KULKARNI K , KERVICHE R , et al. Convolutional neural networks for noniterative reconstruction of compressively sensed images[J]. IEEE Trans.on Computational Imaging, 2018, 4 (3): 326- 340.
doi: 10.1109/TCI.2018.2846413
|
20 |
MOUSAVI A, DASARATHY G, BARANIUK R G. Deepcodec: adaptive sensing and recovery via deep convolutional neural networks[C]//Proc. of the 55th Annual Allerton Conference on Communication, Control, and Computing, 2017: 744-744.
|
21 |
YAO H T , DAI F , ZHANG S L , et al. DR2-net: deep residual reconstruction network for image compressive sensing[J]. Neurocomputing, 2019, 359, 483- 493.
doi: 10.1016/j.neucom.2019.05.006
|
22 |
赵小强, 宋昭漾. 多级跳线连接的深度残差网络超分辨率重建[J]. 电子与信息学报, 2019, 41 (10): 2501- 2508.
doi: 10.11999/JEIT190036
|
|
ZHAO X Q , SONG Z Y . Super-resolution reconstruction of deep residual network with multi-level skip connections[J]. Journal of Electronics & Information Technology, 2019, 41 (10): 2501- 2508.
doi: 10.11999/JEIT190036
|
23 |
TANG Y H , WANG Y H , XU Y X , et al. Scop: scientific control for reliable neural network pruning[J]. Advances in Neural Information Processing Systems, 2020, 33, 10936- 10947.
|
24 |
HE Y, LIU P, WANG Z W, et al. Filter pruning via geometric median for deep convolutional neural networks acceleration[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 4340-4349.
|
25 |
VADERA S , AMEEN S . Methods for pruning deep neural networks[J]. IEEE Access, 2022, 10, 63280- 63300.
doi: 10.1109/ACCESS.2022.3182659
|
26 |
MEIJERINK A , MOLISCH A F . On the physical interpretation of the Saleh-Valenzuela model and the definition of its power delay profiles[J]. IEEE Trans.on Antennas and Propagation, 2014, 62 (9): 4780- 4793.
doi: 10.1109/TAP.2014.2335812
|
27 |
ALKHATEEB A. DeepMIMO: a generic deep learning dataset for millimeter wave and massive MIMO applications[EB/OL]. [2022-05-05]. https://deepmimo.net/.
|