系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (8): 2615-2622.doi: 10.12305/j.issn.1001-506X.2023.08.37

• 通信与网络 • 上一篇    下一篇

基于模型剪枝动态调整压缩率的CSI反馈方法

邵凯1,2,3,*, 杜自群1, 王光宇1,3   

  1. 1. 重庆邮电大学通信与信息工程学院, 重庆 400065
    2. 教育部移动通信工程研究中心, 重庆 400065
    3. 移动通信技术重庆市重点实验室, 重庆 400065
  • 收稿日期:2022-05-07 出版日期:2023-07-25 发布日期:2023-08-03
  • 通讯作者: 邵凯
  • 作者简介:邵凯(1977—),男,副教授,硕士,主要研究方向为智能感知与信息系统、信号与信息智能
    杜自群(1997—),男,硕士研究生,主要研究方向为深度学习、信道状态信息反馈
    王光宇(1964—),男,教授,博士,主要研究方向为新型多址接入技术、多载波调制技术

CSI feedback method for dynamically adjusting compression rate based on model pruning

Kai SHAO1,2,3,*, Ziqun DU1, Guangyu WANG1,3   

  1. 1. School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
    2. Engineering Research Center of Mobile Communications of the Ministry of Education, Chongqing 400065, China
    3. Chongqing Key Laboratory of Mobile Communications Technology, Chongqing 400065, China
  • Received:2022-05-07 Online:2023-07-25 Published:2023-08-03
  • Contact: Kai SHAO

摘要:

针对现有基于深度学习(deep learning, DL)的信道状态信息(channel state information, CSI)反馈方案只能以固定压缩率(compression rate, CR)进行压缩反馈的问题,提出了一种基于模型结构化剪枝动态调整CR的CSI反馈方案。首先设计了残差信道特性注意(residual channel characteristic attention, RCCA)机制,并搭建了CSI反馈网络RCCA-Net,充分利用复信道矩阵实部虚部间的幅度相位依赖关系,进一步提高CSI反馈-重建质量。其次设计了RCCA-Prune方案,并以$\ell^2 $范数评估各神经元对最终结果的贡献度,通过模型结构化剪枝技术删除贡献度较小的神经元以实现CR的动态调整。仿真结果表明,所提的动态调整CR方案在不同CR下均有较佳的反馈性能,且在不同的测试环境中具有良好的泛化性。

关键词: 信道状态信息, 深度学习, 模型剪枝, 通道注意力

Abstract:

Aiming at the problem that the existing channel state information (CSI) feedback scheme based on deep learning (DL) can only perform compression feedback at a fixed compression rate (CR), a CSI feedback scheme for dynamically adjusting CR based on model pruning is proposed. Firstly, a residual channel characteristic attention (RCCA) mechanism is designed, and a CSI feedback network RCCA-Net is built, which makes full use of the amplitude-phase dependence relationship between the real parts and imaginary parts of the complex channel matrix to further improve CSI feedback-reconstruction quality. Secondly, the model RCCA-Prune is designed to dynamically adjust the CR, which uses the $\ell^2 $ norm to evaluate the contribution of each neuron to the final result, and deletes the neurons with less contribution through the model structured pruning technology to realize the dynamic adjustment of the compression rate. The simulation results show that the proposed dynamic adjustment CR scheme has better feedback performance under different CR, and has good generalization in different test environments.

Key words: channel state information, deep learning, model pruning, channel attention

中图分类号: