1 |
SHI W S , CAO J , ZHANG Q , et al. Edge computing: vision and challenges[J]. IEEE Internet of Things Journal, 2016, 3 (5): 637- 646.
doi: 10.1109/JIOT.2016.2579198
|
2 |
SHI W S , DUSTDAR S . The promise of edge computing[J]. Computer, 2016, 49 (5): 78- 81.
doi: 10.1109/MC.2016.145
|
3 |
XIE R C , TANG Q Q , WANG Q N , et al. Collaborative vehi-cular edge computing networks: architecture design and research challenges[J]. IEEE Access, 2019, 7, 178942- 178952.
doi: 10.1109/ACCESS.2019.2957749
|
4 |
SHIN C S , LEE J , LEE H . Infrastructure-less vehicle traffic density estimation via distributed packet probing in V2V network[J]. IEEE Trans.on Vehicular Technology, 2020, 69 (10): 10403- 10418.
doi: 10.1109/TVT.2020.3019783
|
5 |
AL RIDHAWI I , ALOQAILY M , BOUKERCHE A . Comparing fog solutions for energy efficiency in wireless networks: challenges and opportunities[J]. IEEE Wireless Communications, 2019, 26 (6): 80- 86.
doi: 10.1109/MWC.001.1900077
|
6 |
DING R , UJANG N , HAMID H B , et al. Application of complex networks theory in urban traffic network researches[J]. Networks and Spatial Economics, 2019, 19 (4): 1281- 1317.
|
7 |
JIN X , WANG Z X , YANG H H , et al. Synchronization of multiplex networks with stochastic perturbations via pinning adaptive control[J]. Journal of the Franklin Institute, 2021, 358 (7): 3994- 4012.
|
8 |
SONG K J , LI G Q , CHEN X M , et al. Target controllability of two-layer multiplex networks based on network flow theory[J]. IEEE Trans.on Cybernetics, 2021, 51, 2699- 2711.
|
9 |
BOCCALETTI S , BIANCONI G , CRIADO R , et al. The structure and dynamics of multilayer networks[J]. Physics Reports, 2014, 544 (1): 1- 122.
|
10 |
BOCCALETTI S , LATORA V , MORENO Y , et al. Complex networks: structure and Dynamics[J]. Physics Reports, 2006, 424 (4-5): 175- 308.
|
11 |
MARCEAU V , NOEL P A , HEBERT-DUFRESNE L , et al. Modeling the dynamical interaction between epidemics on overlay networks[J]. Physical Review E, 2011, 84 (2): 026105.
|
12 |
GUAN W Q, WEN X M, WANG L H, et al. Network slicing management of 5G ultra-dense networks based on complex network theory[C]//Proc. of the IEEE Globecom Workshops, 2017.
|
13 |
CANO L , CAPONE A , SANSO B . On the evolution of infrastructure sharing in mobile networks: a survey[J]. ITU Journal on Future and Evolving Technology, 2020, 1 (1): 21.
|
14 |
HACKL J , ADEY B T . Modelling multi-layer spatially embedded random networks[J]. Journal of Complex Networks, 2019, 7 (2): 254- 280.
|
15 |
KO S W , HAN K , HUANG K . Wireless networks for mobile edge computing: spatial modeling and latency analysis[J]. IEEE Trans.on Wireless Communications, 2018, 17 (8): 5225- 5240.
|
16 |
KO D , CHAE S H , CHOI W . MDS coded task offloading in stochastic wireless edge computing networks[J]. IEEE Trans.on Wireless Communications, 2021, 21 (3): 2107- 2121.
|
17 |
马海瑛, 肖玉芝, 赵海兴, 等. 三层复杂网络模型构建及特性分析[J]. 复杂系统与复杂性科学, 2020, 17 (4): 16- 29.
|
|
MA H Y , XIAO Y Z , ZHAO H X , et al. Three-layer complex network model construction and characteristic analysis[J]. Complex Systems and Complexity Science, 2020, 17 (4): 16- 29.
|
18 |
刘强, 方锦清, 李永. 三层超网络演化模型特性研究[J]. 复杂系统与复杂性科学, 2015, 12 (2): 64- 71.
|
|
LIU Q , FANG J Q , LI Y . Some characteristics of three-layer super network evolution model[J]. Complex Systems and Complexity Science, 2015, 12 (2): 64- 71.
|
19 |
郁湧, 王莹港, 罗正国, 等. 基于聚类系数和节点中心性的链路预测算法[J]. 清华大学学报(自然科学版), 2022, 62 (1): 98- 104.
|
|
YU Y , WANG Y G , LUO Z G , et al. Link prediction algorithm based on clustering coefficient and node centrality[J]. Journal of Tsinghua University (Science and Technology), 2022, 62 (1): 98- 104.
|
20 |
QI X , MEI G , PICCIALLI F . Resilience evaluation of urban bus-subway traffic networks for potential applications in iot-based smart transportation[J]. IEEE Sensors Journal, 2021, 21 (22): 25061- 25074.
|
21 |
边缘计算产业联盟. 边缘计算参考架构2.0[J]. 自动化博览, 2018, (1): 60- 62.
|
|
Edge computing consortium . Edge computing reference architecture 2.0[J]. Automation Panorama, 2018, (1): 60- 62.
|
22 |
WATTS D J , STROGATZ S H . Collective dynamics of 'small-world' networks[J]. Nature, 1998, 393 (6684): 440- 442.
|
23 |
FREEMAN L C . A set of measures of centrality based on betweenness[J]. Sociometry, 1977, 40 (1): 35- 41.
|
24 |
ROTH A E , SOTOMAYOR M . Two-sided matching[J]. Handbook of Game Theory with Economic Applications, 1992, 1, 485- 541.
|
25 |
JORSWIECK E A. Stable matchings for resource allocation in wireless networks[C]//Proc. of the 17th International Confe-rence on Digital Signal Processing, 2011.
|
26 |
HAAS C , HALL M . Two-sided matching for mentor-mentee allocations—algorithms and manipulation strategies[J]. PloS One, 2019, 14 (3)
|
27 |
乐琦, 张莉莉. 基于新排序函数的直觉模糊双边匹配决策方法[J]. 控制与决策, 2020, 35 (4): 985- 992.
|
|
YUE Q , ZHANG L L . Decision method for intuitionistic fuzzy two-sided matching based on the new ranking function[J]. Control and Decision, 2020, 35 (4): 985- 992.
|
28 |
ZHENG Y J , LI M Y , LIU J K . A two-sided stable matching model of cloud manufacturing tasks and services considering the nonlinear relationship between satisfaction and expectations[J]. Complexity, 2021, 2021, 6735210.
|
29 |
ERDOS P L , RENYI A . On the evolution of random graphs[J]. Transactions of the American Mathematical Society, 1984, 286, 257- 286.
|
30 |
BOLLOBAS B. Random graphs[M]. BOLLOBAS B, ed. Modern graph theory. New York: Springer, 1998: 215-252.
|
31 |
BARABASI A L , ALBERT R . Emergence of scaling in random networks[J]. Science, 1999, 286 (5439): 509- 512.
|
32 |
NEWMAN M E J , WATTS D J . Renormalization group analysis of the small-world network model[J]. Physics Letters A, 1999, 263 (4-6): 341- 346.
|
33 |
ZHANG Y Q , LI Y M , LI M , et al. Method to enhance traffic capacity for multilayer networks[J]. International Journal of Modern Physics B, 2020, 34 (13): 2050140.
|
34 |
WANG Y Y, TANG M M, ZHOU S Y, et al. Performance analysis of heterogeneous mobile edge computing networks with multi-core server[C]//Proc. of the IEEE 20th International Conference on Communication Technology, 2020: 1540-1545.
|
35 |
DING R , ZHANG Y L , ZHANG T , et al. Development of a complex network-based integrated multilayer urban growth and optimisation model for an efficient urban traffic network[J]. Complexity, 2021, 2021, 3467485.
|