1 |
HUANG H Q, SUN G H, ZHANG D, et al. Adaptive attitude control for a kind of heavy-lift launch vehicle based on super-twisting algorithm[C]//Proc. of the IEEE China Automation Congress, 2021: 3288-3293.
|
2 |
ZHANG L, WEI C Z, JING L, et al. Heavy lift launch vehicle technology of adaptive augmented fault tolerant control[C]//Proc. of the IEEE Chinese Guidance, Navigation and Control Conference, 2016: 1587-1593.
|
3 |
ZHANG L , JU X Z , CUI N G . Ascent control of heavy-lift launch vehicle with guaranteed predefined performance[J]. Aerospace Science and Technology, 2021, 110, 106511.
doi: 10.1016/j.ast.2021.106511
|
4 |
NAIR A P , SELVAGANESAN N , LALITHAMBIKA V R . Lyapunov based PD/PID in model reference adaptive control for satellite launch vehicle systems[J]. Aerospace Science and Technology, 2016, 51, 70- 77.
doi: 10.1016/j.ast.2016.01.017
|
5 |
ARAQUE J P B , ZAVOLI A , TROTTA D , et al. Genetic algorithm based parameter tuning for robust control of launch vehicle in atmospheric flight[J]. IEEE Access, 2021, 9, 108175- 108189.
doi: 10.1109/ACCESS.2021.3099006
|
6 |
HE H X , DUAN H B . A multi-strategy pigeon-inspired optimization approach to active disturbance rejection control parameters tuning for vertical take-off and landing fixed-wing UAV[J]. Chinese Journal of Aeronautics, 2022, 35 (1): 19- 30.
doi: 10.1016/j.cja.2021.05.010
|
7 |
YE L Q , TIAN B L , LIU H D , et al. Anti-windup robust backstepping control for an underactuated reusable launch vehicle[J]. IEEE Trans.on Systems, Man, and Cybernetics: Systems, 2020, 52 (3): 1492- 1502.
|
8 |
ZHAO L B, ZHU G S, ZHUANG L, et al. Backstepping control for reentry vehicle improved by bioinspired neuro-dynamic[C]//Proc. of the IEEE 6th International Conference on Automation, Control and Robotics Engineering, 2021: 205-209.
|
9 |
YOU M , ZONG Q , TIAN B L , et al. Nonsingular terminal sliding mode control for reusable launch vehicle with atmospheric disturbances[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232 (11): 2019- 2033.
doi: 10.1177/0954410017708211
|
10 |
ZHANG C F , ZHANG G S , DONG Q . Fixed-time disturbance observer-based nearly optimal control for reusable launch vehicle with input constraints[J]. ISA Transactions, 2022, 122, 182- 197.
doi: 10.1016/j.isatra.2021.04.031
|
11 |
李晓栋, 廖宇新, 廖俊, 等. 可重复使用运载火箭一子级垂直回收有限时间滑模控制[J]. 中南大学学报(自然科学版), 2020, 51 (4): 979- 988.
|
|
LI X D , LIAO Y X , LIAO J , et al. Finite-time sliding mode control for vertical recovery of the first-stage of reusable rocket[J]. Journal of Central South University (Science and Technology), 2020, 51 (4): 979- 988.
|
12 |
吴燕生. 火箭大偏航入轨双回路扰动观测补偿有限时间收敛滑模控制[J]. 宇航总体技术, 2019, 3 (4): 1- 8.
|
|
WU Y S . Double loop disturbance observer based finite time convergence sliding mode control for rocket orbital insertion with large yaw[J]. Astronautical Systems Engineering Technology, 2019, 3 (4): 1- 8.
|
13 |
ZHANG L , WEI C Z , WU R , et al. Fixed-time extended state observer based non-singular fast terminal sliding mode control for a VTVL reusable launch vehicle[J]. Aerospace Science and Technology, 2018, 82, 70- 79.
|
14 |
ZENG T Y , REN X M , ZHANG Y . Fixed-time sliding mode control and high-gain nonlinearity compensation for dual-motor driving system[J]. IEEE Trans.on Industrial Informatics, 2019, 16 (6): 4090- 4098.
|
15 |
WANG F , MIAO Y , LI C Y , et al. Attitude control of rigid spacecraft with predefined-time stability[J]. Journal of the Franklin Institute, 2020, 357 (7): 4212- 4221.
doi: 10.1016/j.jfranklin.2020.01.001
|
16 |
LIANG C D , GE M F , LIU Z W , et al. A novel sliding surface design for prede-fined-time stabilization of Euler-Lagrange systems[J]. Nonlinear Dynamics, 2021, 106 (1): 445- 458.
doi: 10.1007/s11071-021-06826-0
|
17 |
ZHANG L , JING L , YE L H , et al. Predefined-time control for a horizontal takeoff and horizontal landing reusable launch vehicle[J]. Aircraft Engineering and Aerospace Technology, 2021, 93 (6): 957- 970.
doi: 10.1108/AEAT-11-2020-0253
|
18 |
MEI H T, GUO Y H, YANG J Y, et al. Adaptive fault tole-rant attitude control for heavy-lift launch vehicles with input nonlinearities[C]//Proc. of the IEEE 40th Chinese Control Conference, 2021: 7633-7638.
|
19 |
JIMENEZ E , MUNOZ A J , SANCHEZ J D , et al. A Lyapunov-like characterization of predefined-time stability[J]. IEEE Trans.on Automatic Control, 2020, 65 (11): 4922- 4927.
doi: 10.1109/TAC.2020.2967555
|
20 |
ZOU A M , FAN Z . Fixed-time attitude tracking control for rigid spacecraft without angular velocity measurements[J]. IEEE Trans.on Industrial Electronics, 2019, 67 (8): 6795- 6805.
|
21 |
XIE S E , CHEN Q . Adaptive nonsingular predefined-time control for attitude stabilization of rigid spacecrafts[J]. IEEE Trans.on Circuits and Systems Ⅱ: Express Briefs, 2021, 69 (1): 189- 193.
|
22 |
姜博严. 二阶系统有限时间控制问题研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
|
|
JIANG B Y. Research on finite-time control problem for second order system[D]. Harbin: Harbin Institute of Techno-logy, 2018.
|
23 |
CHEN Z , HUANG F H , CHEN W J , et al. RBFNN-based adaptive sliding mode control design for delayed nonlinear multilateral telerobotic system with cooperative manipulation[J]. IEEE Trans.on Industrial Informatics, 2019, 16 (2): 1236- 1247.
|
24 |
GHELLAB M Z , ZEGHLACHE S , DJERIOUI A , et al. Experimental validation of adaptive RBFNN global fast dynamic terminal sliding mode control for twin rotor MIMO system against wind effects[J]. Measurement, 2021, 168, 108472.
doi: 10.1016/j.measurement.2020.108472
|
25 |
ZHAO Z J , WANG X G , ZHANG C L , et al. Neural network based boundary control of a vibrating string system with input deadzone[J]. Neurocomputing, 2018, 275, 1021- 1027.
doi: 10.1016/j.neucom.2017.09.050
|
26 |
HAN Z G , ZHANG K , YANG T S , et al. Spacecraft fault-tolerant control using adaptive non-singular fast terminal sliding mode[J]. IET Control Theory & Applications, 2016, 10 (16): 1991- 1999.
|
27 |
XIA Y Q, ZHANG J H, LU K F, et al. Finite-time attitude control for rigid spacecraft based on adaptive super-twisting algorithm[M]// Oliver Jackson, ed. Finite Time and Cooperative Control of Flight Vehicles. Singapore: Springer, 2019: 117-140.
|
28 |
ZHOU N , XIA Y Q , LU K F , et al. Decentralised finite-time attitude synchronisation and tracking control for rigid spacecraft[J]. International Journal of Systems Science, 2015, 46 (14): 2493- 2509.
doi: 10.1080/00207721.2013.868949
|
29 |
ZHOU N , XIA Y Q . Coordination control of multiple Euler-Lagrange systems for escorting mission[J]. International Journal of Robust and Nonlinear Control, 2015, 25 (18): 3596- 3616.
doi: 10.1002/rnc.3282
|
30 |
NAGESH I , EDWARDS C . A multivariable super-twisting sliding mode approach[J]. Automatica, 2014, 50 (3): 984- 988.
doi: 10.1016/j.automatica.2013.12.032
|
31 |
尤明. 可重复使用运载器固定时间姿态跟踪控制研究[D]. 天津: 天津大学, 2017.
|
|
YOU M. Research on fixed-time attitude tracking control for reusable launch vehicle[D]. Tianjin: Tianjin University, 2017.
|