系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (8): 2562-2569.doi: 10.12305/j.issn.1001-506X.2023.08.31
刘奇1, 张弫2, 饶建兵3, 赵书阁1,*, 李小玉1, 向开恒3
收稿日期:
2022-04-07
出版日期:
2023-07-25
发布日期:
2023-08-03
通讯作者:
赵书阁
作者简介:
刘奇 (1994—),男,博士研究生,主要研究方向为星座构型设计与保持策略研究、轨道设计与优化技术研究基金资助:
Qi LIU1, Zhen ZHANG2, Jianbing RAO3, Shuge ZHAO1,*, Xiaoyu LI1, Kaiheng XIANG3
Received:
2022-04-07
Online:
2023-07-25
Published:
2023-08-03
Contact:
Shuge ZHAO
摘要:
稳定的构型是星座发挥其正常功能的基础。首先结合卫星在轨运行动力学环境,回顾了地球重力场模型、日月引力模型、大气模型与太阳光压模型的发展,在此基础上介绍了大气模型和太阳光压模型的在轨修正技术。其次,阐述了星座构型保持的必要性与可行性,总结归纳了摄动补偿法、预先设计法、全局优化法、阻力差分法与极限环保持法等构型保持方法,对比了绝对保持与相对保持的控制基准与方法特点。最后,展望了针对不同高度的低轨(low Earth orbit,LEO)星座构型保持,旨在为LEO星座的构型保持策略设计提供参考。
中图分类号:
刘奇, 张弫, 饶建兵, 赵书阁, 李小玉, 向开恒. 低轨星座构型保持研究现状与分析[J]. 系统工程与电子技术, 2023, 45(8): 2562-2569.
Qi LIU, Zhen ZHANG, Jianbing RAO, Shuge ZHAO, Xiaoyu LI, Kaiheng XIANG. Research status and analysis of configuration maintenance of LEO constellation[J]. Systems Engineering and Electronics, 2023, 45(8): 2562-2569.
表2
主要大气模型"
大气模型 | 系列以及首发年份 | 发布年份 | 适用高度范围/km | 精度 | 发布机构 | 备注 |
USSA76[ | USSA系列,1962 | 1976 | 0~1 000 | 一般 | 美国标准大气推广委员会 | 驱动参数延迟发布 尚未公开发布 |
Jacchia-Roberts[ | Jacchia系列,1965 | 1971 | 90~2 500 | 较高 | 史密松天文台 | |
NRLMSISE00 | MSIS系列,1977 | 2002 | 0~2 500 | 较高 | 美国海军研究实验室 | |
JB2008 | JB系列,2006 | 2008 | 90~2 500 | 高 | 美国空军空间司令部 | |
DTM2013 | DTM系列,1978 | 2015 | 120~2 500 | 高 | 法国宇航局 |
1 |
ABASHIDZE A , CHERNYKH I , MEDNIKOVA M . Satellite constellations: International legal and technical aspects[J]. Acta Astronautica, 2022, 196, 176- 185.
doi: 10.1016/j.actaastro.2022.04.019 |
2 | JUKNAITE K, CRISP N H. Low latency broadband internet satellite constellations-technology, risks and global impact[C]//Proc. of the ASCEND, 2021. |
3 |
RAVISHANKAR C , GOPAL R , BENAMMAR N , et al. Next-generation global satellite system with mega-constellations[J]. International Journal of Satellite Communications and Networking, 2021, 39 (1): 6- 28.
doi: 10.1002/sat.1351 |
4 |
PORTILLO I D , CAMERON B G , CRAWLEY E F . A technical comparison of three low earth orbit satellite constellation systems to provide global broadband[J]. Acta Astronautica, 2019, 159, 123- 135.
doi: 10.1016/j.actaastro.2019.03.040 |
5 | 吴树范, 王伟, 温济帆, 等. 低轨互联网星座发展研究综述[EB/OL]. 北京航空航天大学学报[2022-11-06]. https://kns.cnki.net/kcms/detail/detail.aspx?doi=10.13700/j.bh.1001-5965.2022.0242. |
WU S F, WANG W, WEN J F, et al. A review on development of LEO Internet constellation[EB/OL]. [2022-11-06]. https://kns.cnki.net/kcms/detail/detail.aspx?doi=10.13700/j.bh.1001-5965.2022.0242. | |
6 | 项军华. 卫星星座构形控制与设计研究[D]. 长沙: 国防科学技术大学, 2007. |
XIANG J H. Study on control and design of configuration for satellite constellation[D]. Changsha: National University of Defense Technology, 2007. | |
7 |
陈雨, 赵灵峰, 刘会杰, 等. 低轨Walker星座构型演化及维持策略分析[J]. 宇航学报, 2019, 40 (11): 1296- 1303.
doi: 10.3873/j.issn.1000-1328.2019.11.005 |
CHEN Y , ZHAO L F , LIU H J , et al. Analysis of configuration and maintenance strategy of LEO Walker constellation[J]. Journal of Astronautics, 2019, 40 (11): 1296- 1303.
doi: 10.3873/j.issn.1000-1328.2019.11.005 |
|
8 |
李玖阳, 胡敏, 王许煜, 等. 低轨卫星星座精密定轨及运行控制发展综述[J]. 航天控制, 2020, 38 (1): 3- 8.
doi: 10.16804/j.cnki.issn1006-3242.2020.01.010 |
LI J Y , HU M , WANG X Y , et al. A summary of the progress of precision orbit determination and operation control for low earth orbit satellite constellation[J]. Aerospace Control, 2020, 38 (1): 3- 8.
doi: 10.16804/j.cnki.issn1006-3242.2020.01.010 |
|
9 |
郑伟, 许厚泽, 钟敏, 等. 地球重力场模型研究进展和现状[J]. 大地测量与地球动力学, 2010, 30 (4): 83- 91.
doi: 10.3969/j.issn.1671-5942.2010.04.016 |
ZHENG W , XU H Z , ZHONG M , et al. Progress and present status of research on Earth's graviational field models[J]. Journal of Geodesy and Geodynamics, 2010, 30 (4): 83- 91.
doi: 10.3969/j.issn.1671-5942.2010.04.016 |
|
10 |
张峰, 张香莎, 高旭东. 地球卫星动力学定轨中摄动模型的选取[J]. 航天控制, 2021, 39 (4): 43- 50.
doi: 10.16804/j.cnki.issn1006-3242.2021.04.006 |
ZHANG F , ZHANG X S , GAO X D . Selection of perturbation model for Earth satellite dynamic orbit determination[J]. Aerospace Control, 2021, 39 (4): 43- 50.
doi: 10.16804/j.cnki.issn1006-3242.2021.04.006 |
|
11 | KOZAI Y. A new method to compute lunisolar perturbations in satellite motions[R]. Cambridge, Massachusetts: Smithsonian Astrophysical Observatory Special Report, 1973. |
12 | SOLORZANO C R H , DE ALMEIDA PRADO A F B . Third-body perturbation using single averaged model: application to Lunisolar Perturbations[J]. Nonlinear Dynamics and Systems Theory, 2007, 7 (4): 409- 417. |
13 | 刘林. 航天器轨道理论[M]. 北京: 国防工业出版社, 2000. |
LIU L . Orbit theory of spacecraft[M]. Beijing: National Defense Industry Press, 2000. | |
14 | PICONE J M , HEDIN A E , DROB D P , et al. NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues[J]. Journal of Geophysical Research: Space Physics, 2002, 107 (A12): 15- 16. |
15 | BOWMAN B R, TOBISKA W K, MARCOS F A, et al. A new empirical thermospheric density model JB2008 using new solar and geomatnetic indices[C]//Proc. of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Honolulu, Hawaii, American Institute of Aeronautics and Astronautics, 2008. |
16 | BRUINSMA S . The DTM-2013 thermosphere model[J]. Journal of Space Wearther and Space Climate, 2015, 5 (27): A1. |
17 |
EMMERT J T . Thermospheric mass density: a review[J]. Advances in Space Research, 2015, 56 (5): 773- 824.
doi: 10.1016/j.asr.2015.05.038 |
18 | 李勰. 星载原位大气密度探测数据处理及经验密度模式修正[D]. 北京: 中国科学院大学, 2020. |
LI X. The processing of in-situ thermospheric density observations and empirical density model calibrations[D]. Beijing: University of Chinese Academy of Sciences, 2020. | |
19 | COESA. U.S. standard atmosphere 1976[R]. Washington, D.C. : National Aeronautics and Space Administration, 1976. |
20 | ROBERTS C . An analytic model for upper atmosphere densities based upon Jacchia's 1970 models[J]. Celestial Mechanics, 1971, (4): 368- 377. |
21 |
周杨淼, 王玲, 黄文德. 一种适用于导航卫星自主运行的高精精度光压模型[J]. 天文学进展, 2015, 33 (4): 521- 530.
doi: 10.3969/j.issn.1000-8349.2015.04.08 |
ZHOU Y M , WANG L , HUANG W D . A high precision model of solar radiation pressure suitable for satellites autonomous navigation[J]. Progress in Astronomy, 2015, 33 (4): 521- 530.
doi: 10.3969/j.issn.1000-8349.2015.04.08 |
|
22 |
COLOMBO O L . The dynamics of global positioning system orbits and the determination of precise ephemerides[J]. Journal of Geophysical Research: Solid Earth, 1989, 94 (B7): 9167- 9182.
doi: 10.1029/JB094iB07p09167 |
23 |
RODRIGUEZ-SOLANO C J , HUGENTOBLER U , STEIGENBERGER P , et al. Improving the orbits of GPS block ⅡA satellites during eclipse seasons[J]. Advances in Space Research, 2013, 52 (8): 1511- 1529.
doi: 10.1016/j.asr.2013.07.013 |
24 | 葛丽君. 基于低轨卫星加速度计的大气密度反演研究[D]. 成都: 电子科技大学, 2019. |
GE L J. Inversion of atmospheric density based on accelerometers of LEO satellites[J]. Chengdu: University of Electronic Science and Technology of China, 2019. | |
25 | 苗娟, 刘四清, 李志涛, 等. 基于实时观测数据的大气密度模式修正[J]. 空间科学学报, 2011, 31 (4): 459- 466. |
MIAO J , LIU S Q , LI Z T , et al. Atmospheric density calibration using the real-time satellite observation[J]. Chinese Journal of Space Science, 2011, 31 (4): 459- 466. | |
26 |
陈旭杏, 胡雄, 肖存英, 等. 基于卫星数据和NRLMSISE-00模型的低轨道大气密度预报修正方法[J]. 地球物理学报, 2013, 56 (10): 3246- 3254.
doi: 10.6038/cjg20131003 |
CHEN X X , HU X , XIAO C Y , et al. Correction method of the low earth orbital neutral denstiy predictions based on the satellites data and NRLMSISE-00 model[J]. Chinese Journal of Geophysics, 2013, 56 (10): 3246- 3254.
doi: 10.6038/cjg20131003 |
|
27 | CHOBOTOV V A . Orbital mechanics[M]. 3rd ed Reston, Virginia: American Institute of Aeronautics and Astronautics Inc., 2002. |
28 | 周杨淼. 导航卫星太阳光压建模方法与模型特性分析[D]. 长沙: 湖南大学, 2016. |
ZHOU Y M. Research on solar radiation pressure modeling methods of navigation satellites and model characters analysis[D]. Changsha: Hunan University, 2016. | |
29 |
HU S J , CHEN L , LIU L . Evolution of the structure evolution of satellite constellations[J]. Chinese Astronomy and Astrophysics, 2003, 27 (3): 325- 334.
doi: 10.1016/S0275-1062(03)90055-5 |
30 |
CHAO C C , GICK R A . Long-term evolution of navigation satellite orbits: GPS/GLONASS/ GALILEO[J]. Advances in Space Research, 2004, 34 (5): 1221- 1226.
doi: 10.1016/j.asr.2003.01.021 |
31 |
DELEFLIE F , ROSSI A , PORTMANN C , et al. Semi-analytical investigations of the long term evolution of the eccentricity of Galileo and GPS-like orbits[J]. Advances in Space Research, 2011, 47 (5): 811- 821.
doi: 10.1016/j.asr.2010.11.038 |
32 | 孙俞, 曹静, 伍升钢, 等. 大型低轨星座自适应绝对站位保持法[J]. 力学与实践, 2021, 43 (5): 680- 686. |
SUN Y , CAO J , WU S G , et al. Adaptive absolute station-keeping method for LEO mega-constellation[J]. Mechanics in Engineering, 2021, 43 (5): 680- 686. | |
33 |
MUSEN P . The influence of the solar radiation pressure on the motion of an artificial satellite[J]. Journal of Geophysical Research, 1960, 65 (5): 1391- 1396.
doi: 10.1029/JZ065i005p01391 |
34 | KOZAI Y . The motion of a close earth satellite[J]. Astrono-mical Journal, 1959, 64 (8): 367- 377. |
35 | BROUWER D . Solution of the problem of artificial satellite the- ory without drag[J]. Astronomical Journal, 1959, 64 (9): 378- 397. |
36 |
刘林. 人造地球卫星在临界角附近运动的解[J]. 天文学报, 1974, 15 (2): 230- 240.
doi: 10.15940/j.cnki.0001-5245.1974.02.010 |
LIU L . A solution of the motion of an artifical satellite in the vicinity of the critical inclination[J]. Acta Astronomica Sinica, 1974, 15 (2): 230- 240.
doi: 10.15940/j.cnki.0001-5245.1974.02.010 |
|
37 | 陈长春, 林滢, 沈鸣, 等. 一种考虑摄动影响的星座构型稳定性设计方法[J]. 上海航天(中英文), 2020, 37 (1): 33- 37. |
CHEN C C , LIN Y , SHEN M , et al. A novel design method for the constellation configuration stability considering the perturbation influence[J]. Aerospace Shanghai (Chinese & English), 2020, 37 (1): 33- 37. | |
38 |
FAN L , HU M , JIANG C . Analytical long-term evolution and perturbation compensation models for Beidou MEO satellites[J]. Chinese Journal of Aeronautics, 2018, 31 (2): 330- 338.
doi: 10.1016/j.cja.2017.10.010 |
39 | PEREZ-CAMBRILES A, BEJAR-ROMERO, J A, AGUILAR-TABOADA D, et al. Galileo station keeping strategy[C]//Proc. of the 20th International Symposium on Space Fligh Dynamics, 2007. |
40 |
李玖阳, 胡敏, 王许煜, 等. 低轨Walker星座构型偏置维持控制方法分析[J]. 中国空间科学技术, 2021, 41 (2): 38- 47.
doi: 10.16708/j.cnki.1000-758X.2021.0020 |
LI J Y , HU M , WANG X Y , et al. Analysis of configuration offsetting maintenance method for LEO Walker constellation[J]. Chinese Space Science and Technology, 2021, 41 (2): 38- 47.
doi: 10.16708/j.cnki.1000-758X.2021.0020 |
|
41 |
李恒年, 李济生, 焦文海. 全球星摄动运动及摄动补偿运控策略研究[J]. 宇航学报, 2010, 31 (7): 1756- 1761.
doi: 10.3873/j.issn.1000-1328.2010.07.009 |
LI H N , LI J S , JIAO W H . Analyzing perturbation motion and studying configuration maintenance strategy for Compass-M Navigation constellation[J]. Journal of Astronautics, 2010, 31 (7): 1756- 1761.
doi: 10.3873/j.issn.1000-1328.2010.07.009 |
|
42 |
姜宇, 李恒年, 宝音贺西. Walker星座摄动分析与保持控制策略[J]. 空间控制技术与应用, 2013, 39 (2): 36- 41.
doi: 10.3969/j.issn.1674-1579.2013.02.007 |
JIANG Y , LI H N , BAOYIN H X . On perturbation and orbital maintenance control strategy for Walker constellation[J]. Aerospace Control and Application, 2013, 39 (2): 36- 41.
doi: 10.3969/j.issn.1674-1579.2013.02.007 |
|
43 |
OLIVEIRA T C , PRADO A F B A . Mapping orbits with low station keeping costs for constellations of satellites based on the integral over the time of the perturbing forces[J]. Acta Astronautica, 2014, 104 (1): 350- 361.
doi: 10.1016/j.actaastro.2014.06.035 |
44 |
BAINUM P M , TAN Z Z , DUAN X D . Review of station keeping strategies for elliptically orbiting constellations in along-track formation[J]. International Journal of Solids and Structures, 2005, 42 (21-22): 5683- 5691.
doi: 10.1016/j.ijsolstr.2005.03.017 |
45 | DUAN X D , BAINUM P M . Formation flying and constellation station keeping in near-circular orbits[J]. Advances in the Astronautical Sciences, 2005, 119, 3209- 3228. |
46 |
BRUNO M J , PERNICKA H J . Tundra constellation design and stationkeeping[J]. Journal of Spacecraft and Rockets, 2005, 42 (5): 902- 912.
doi: 10.2514/1.7765 |
47 | ROCCO E M , DE OLIVEIRA E S M L , DE ALMEIDA P A F B . Station keeping of constellations using multiobjective strategies[J]. Mathematical Problems in Engineering, 2013, (1): 643- 645. |
48 | CALVET J L , KARDOUDI G . A multilevel approach for the station-keeping of a phased satellite constellation[J]. IFAC Proceedings Volumes, 1996, 29 (1): 5441- 5446. |
49 | DENG S C , MENG T , JIN Z H . Nonlinear programming control using differential aerodynamic drag for CubeSat formation flying[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18 (7): 867- 881. |
50 | BROCHET C , GARCIA J M , ENJALBERT J M , et al. Models and algorithms for constellation station keeping strategies and satellites replacement[J]. Advances in Astronautical Sciences, 1998, 100 (1): 31- 45. |
51 | JAUNZEMIS A D , ROSCOE C W T , HOLZINGER M J . Multi-tiered approach to constellation maneuver optimization for low-thrust station-keeping[J]. Advances in the Astronautical Sciences, 2017, 160, 641- 660. |
52 | LEONARD C L , HOLLISTER W M , BERGMANN E V . Orbital formationkeeping with differential drag[J]. Journal of Guidance Control and Dynamics, 1989, 12 (1): 108- 113. |
53 | FINLEY T , ROSE D , NAVE K , et al. Techniques for LEO constellation deployment and phasing utilizing differential aerodynamic drag[J]. Advances in the Astronautical Sciences, 2014, 150, 1397- 1411. |
54 | MACLAY T D , TUTTLE C . Satellite stationkeeping of the Orbcomm constellation via active control of atmospheric drag: operations, constraints, and performance[J]. Advances in the Astronautical Sciences, 2005, 120 (I): 763- 773. |
55 | CYRUS F , JAMES M , VIVEK V , et al. Constellation phasing with differential drag on Planet Labs satellites[J]. Journal of Spacecraft and Rockets, 2018, 55 (2): 473- 483. |
56 | 李于衡. 地球静止轨道通信卫星位置保持原理及实施策略[J]. 飞行器测控学报, 2003, 22 (4): 53- 61. |
LI Y H . The principle of station-keeping and maneuver strategies of geostationary communication satellites[J]. Journal of Spacecraft TT&C Technology, 2003, 22 (4): 53- 61. | |
57 | 王洋, 刘莹莹, 黄河, 等. MEO卫星相对相位自主保持策略[J]. 飞行力学, 2014, 32 (4): 338-341, 346 |
WANG Y , LIU Y Y , HUANG H , et al. Autonomous orbit maintenance strategy for relative phase of MEO satellite[J]. Flight Dynamics, 2014, 32 (4): 338-341, 346 | |
58 | HE Y C , XU M , JIA X H , et al. High-precision repeat-groundtrack orbit design and maintenance for Earth observation missions[J]. Celestial Mechanics and Dynamical Astronomy, 2017, 128 (2-3): 275- 294. |
59 | 刘奇, 向开恒, 赵书阁, 等. 一种低轨星座高精度相位保持方法[J]. 宇航学报, 2021, 42 (11): 1377- 1384. |
LIU Q , XIANG K H , ZHAO S G , et al. A high precision phase keeping method for LEO constellation[J]. Journal of Astronautics, 2021, 42 (11): 1377- 1384. | |
60 | 齐彧, 李新刚, 林骁雄. 应用GNSS数据拟合的卫星自主维持星座构型策略[J]. 航天器工程, 2022, 31 (2): 12- 18. |
QI Y , LI X G , LIN X X . Autonomous maintenance strategy for constellation configuration by satellite using GNSS data fitting[J]. Spacecraft Engineering, 2022, 31 (2): 12- 18. | |
61 | 孙俞, 沈红新. 基于TLE的低轨巨星座控制研究[J]. 力学与实践, 2020, 42 (2): 156- 162. |
SUN Y , SHEN H X . The control of mega constellation at low earth orbit based on TLE[J]. Mechanics in Engineering, 2020, 42 (2): 156- 162. | |
62 | 向开恒. 卫星星座的站位保持与控制研究[D]. 北京: 北京航空航天大学, 1999. |
XIANG K H. Studies on station keeping and control of satellite constellations[D]. Beijing: Beijing University of Aeronautics and Astronautics, 1999. | |
63 | 胡松杰, 申敬松, 郇佩. 基于参考轨道的Walker星座相对相位保持策略[J]. 空间控制技术与应用, 2010, 36 (5): 45- 49. |
HU S J , SHEN J S , HUAN P . A relative phase keeping strategy of Walker constellation based on reference orbit[J]. Aerospace Control and Application, 2010, 36 (5): 45- 49. | |
64 | KECHICHIAN J A . Analysis and implementation of in-plane stationkeeping of continuously perturbed Walker constellations[J]. Acta Astronautica, 2009, 65 (11-12): 1650- 1667. |
65 | 杨盛庆, 吴敬玉, 朱文山, 等. 基于星间链路的星座相对构型保持方法[EB/OL]. [2022-11-06]. https://kns.cnki.net/kcms/detail/11.1929.v.20220311.1150.056.html. |
YANG S Q, WU J Y, ZHU W S, et al. Control method of constellation relative configuration maintenance based on inter satellite links[EB/OL]. [2022-11-06]. https://kns.cnki.net/kcms/detail/11.1929.v.20220311.1150.056.html. |
[1] | 周志明, 林凡, 姚晓先, 宋晓东. 电动舵机极限环机理分析和抑制措施[J]. 系统工程与电子技术, 2021, 43(3): 773-778. |
[2] | 沈丹, 刘静. 大型低轨星座部署对空间碎片环境的影响分析[J]. 系统工程与电子技术, 2020, 42(9): 2041-2051. |
[3] | 李佳炜, 江晶, 刘重阳, 吴卫华. 多星载光学传感器系统误差极大似然配准算法[J]. 系统工程与电子技术, 2020, 42(1): 1-9. |
[4] | 常燕, 陈韵, 鲜勇, 张大巧, 高晶. 椭圆轨道上目标监测绕飞轨道构型设计与构型保持[J]. 系统工程与电子技术, 2017, 39(6): 1317-1324. |
[5] | 王博,安玮,谢恺,周一宇. 基于分支剔除的低轨星座实时传感器调度算法[J]. Journal of Systems Engineering and Electronics, 2010, 32(6): 1244-1250. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||