系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (8): 2533-2545.doi: 10.12305/j.issn.1001-506X.2023.08.28
刘幸川, 陈丹鹤, 徐根, 廖文和
收稿日期:
2022-04-26
出版日期:
2023-07-25
发布日期:
2023-08-03
通讯作者:
陈丹鹤
作者简介:
刘幸川(1993—),男,博士研究生,主要研究方向为卫星编队飞行与控制、轨道动力学基金资助:
Xingchuan LIU, Danhe CHEN, Gen XU, Wenhe LIAO
Received:
2022-04-26
Online:
2023-07-25
Published:
2023-08-03
Contact:
Danhe CHEN
摘要:
针对近地圆轨道卫星编队维持问题, 开展了脉冲控制方案与维持控制策略研究,并搭建了仿真环境进行验证。根据相对轨道根数(relative orbital elements, ROEs)的状态转移方程,推导了各ROEs元素在J2摄动下的漂移速率,并针对编队构型受到空间摄动的破坏问题,提出了两种不同的编队脉冲控制方案和维持策略。基于空间圆编队长期维持需求,建立了包括高精度轨道递推算法的任务仿真环境,从脉冲消耗与控制误差对提出的方案策略进行了分析讨论,验证了脉冲方案与维持策略的可行性。仿真结果表明,所提出的脉冲控制方案与维持策略具有较高的有效性及可靠性,可用于未来空间编队飞行任务。
中图分类号:
刘幸川, 陈丹鹤, 徐根, 廖文和. 卫星编队脉冲机动维持控制与策略[J]. 系统工程与电子技术, 2023, 45(8): 2533-2545.
Xingchuan LIU, Danhe CHEN, Gen XU, Wenhe LIAO. Control and strategy for satellites formation maintenance with impulsive maneuver[J]. Systems Engineering and Electronics, 2023, 45(8): 2533-2545.
表4
伴随三星漂移速率的理论值与仿真值对比"
编号 | 参数 | 理论速率/(×10-4 m/s) | 仿真速率/(×10-4 m/s) | 误差/% |
卫星1 | 1.060 | 1.037 | 2.217 | |
-2.912 | -2.957 | 1.521 | ||
0 | -0.020 | - | ||
-5.415 | -4.973 | 8.888 | ||
卫星2 | 1.992 | 2.023 | 1.532 | |
2.374 | 2.339 | 1.496 | ||
0 | 0.017 | - | ||
-10.177 | -9.356 | 8.775 | ||
卫星3 | -3.052 | -3.016 | 1.193 | |
0.538 | 0.518 | 3.720 | ||
0 | 0.003 | - | ||
15.593 | 14.432 | 8.044 |
表6
伴随三星在各方向上的总脉冲汇总"
脉冲值 | 卫星1 | 卫星2 | 卫星3 | ||||||||
δvR | δvT | δvN | δvR | δvT | δvN | δvR | δvT | δvN | |||
算例0 | 0.283 02 | 0.016 56 | 0.360 17 | 0.283 09 | 0.016 41 | 0.673 97 | 0.280 45 | 0.018 68 | 1.036 31 | ||
算例1 | 0.293 04 | 0.016 35 | 0.377 19 | 0.293 41 | 0.016 21 | 0.705 89 | 0.290 75 | 0.019 53 | 1.085 39 | ||
算例3 | 0.293 07 | 0.014 62 | 0.377 16 | 0.293 28 | 0.013 83 | 0.705 89 | 0.290 71 | 0.019 70 | 1.085 47 | ||
算例5 | 0.298 20 | 0.014 41 | 0.385 67 | 0.298 61 | 0.013 77 | 0.721 84 | 0.295 88 | 0.019 94 | 1.110 01 | ||
脉冲值 | 卫星1 | 卫星2 | 卫星3 | ||||||||
δvT | δvN | δvT | δvN | δvT | δvN | ||||||
算例2 | 0.147 56 | 0.377 26 | 0.147 48 | 0.705 96 | 0.146 07 | 1.085 31 | |||||
算例4 | 0.144 79 | 0.371 22 | 0.144 18 | 0.694 76 | 0.142 87 | 1.067 18 | |||||
算例6 | 0.150 07 | 0.385 74 | 0.149 31 | 0.721 91 | 0.148 11 | 1.109 88 |
1 | 郑重. 多航天器编队飞行分布式协同控制[D]. 哈尔滨: 哈尔滨工业大学, 2014. |
ZHENG Z. Distributed coordinated control for multiple spacecraft formation flying[D]. Harbin: Harbin Institute of Techno-logy, 2014. | |
2 |
IVANOV D , OVCHINNIKOV M , TKACHEY S . Nanosatellites formation flying control approaches overview[J]. IOP Conference Series: Materials Science and Engineering, 2020, 984 (1): 012023.
doi: 10.1088/1757-899X/984/1/012023 |
3 | LOWE S, MARKEVITCH M, D'AMICO S. Relative navigation and pointing error budget for an X-ray astronomy formation-flying mission[C]//Proc. of the 44th Annual AAS Guidance, Navigation, and Control Conference, 2022. |
4 |
LOREGGIA D , FINESCHI S , CAPOBIANCO G , et al. PROBA-3 mission and the shadow position sensors: metrology mea-surement concept and budget[J]. Advances in Space Research, 2021, 67 (11): 3793- 3806.
doi: 10.1016/j.asr.2020.07.022 |
5 |
JOFFRE E , WEALTHY D , FERNANDEZ I , et al. LISA: heliocentric formation design for the laser interferometer space antenna mission[J]. Advances in Space Research, 2021, 67 (11): 3868- 3879.
doi: 10.1016/j.asr.2020.09.034 |
6 |
LIU L , LIU J G , WU Y M . Event-triggered coordinated control for multiple solar sail formation flying around planetary displaced orbits[J]. Acta Astronautica, 2021, 184, 286- 298.
doi: 10.1016/j.actaastro.2021.04.011 |
7 | 杨军. 小卫星SAR子孔径成像技术研究[D]. 合肥: 合肥工业大学, 2021. |
YANG J. Research on sub aperture imaging technology of small sa-tellite SAR[D]. Hefei: Hefei University of Technology, 2021. | |
8 |
SARNO S , D'ERRICO M , GUO J , et al. Path planning and guidance algorithms for SAR formation reconfiguration: comparison between centralized and decentralized approaches[J]. Acta Astronautica, 2020, 167, 404- 417.
doi: 10.1016/j.actaastro.2019.11.016 |
9 |
GRASSO M , RENGA A , FASANO G , et al. Design of an end-to-end demonstration mission of a formation-flying synthetic aperture radar (FF-SAR) based on microsatellites[J]. Advances in Space Research, 2021, 67 (11): 3909- 3923.
doi: 10.1016/j.asr.2020.05.051 |
10 |
DI MAURO G , SPILLER D , BEVILACQUA R , et al. Spacecraft formation flying reconfiguration with extended and impulsive maneuvers[J]. Journal of the Franklin Institute, 2019, 356 (6): 3474- 3507.
doi: 10.1016/j.jfranklin.2019.02.012 |
11 |
CHO H . Energy-optimal reconfiguration of satellite formation flying in the presence of uncertainties[J]. Advances in Space Research, 2021, 67 (5): 1454- 1467.
doi: 10.1016/j.asr.2020.11.036 |
12 | 王有亮. 卫星编队飞行相对轨迹优化与控制[D]. 北京: 中国科学院大学, 2018. |
WANG Y L. Relative trajectory optimization and control for satellite formation flying[D]. Beijing: University of Chinese Academy of Sciences, 2018. | |
13 |
SCALA F , GAIAS G , COLOMBO C , et al. Design of optimal low-thrust manoeuvres for remote sensing multi-satellite formation flying in low Earth orbit[J]. Advances in Space Research, 2021, 68 (11): 4359- 4378.
doi: 10.1016/j.asr.2021.09.030 |
14 |
SARNO S , GUO J , D'ERRICO M , et al. A guidance approach to satellite formation reconfiguration based on convex optimization and genetic algorithms[J]. Advances in Space Research, 2020, 65 (8): 2003- 2017.
doi: 10.1016/j.asr.2020.01.033 |
15 |
SULLIVAN J , GRIMBERG S , D'AMICO S . Comprehensive survey and assessment of spacecraft relative motion dynamics models[J]. Journal of Guidance, Control, and Dynamics, 2017, 40 (8): 1837- 1859.
doi: 10.2514/1.G002309 |
16 | D'AMICO S. Autonomous formation flying in low earth orbit[D]. Delft: Delft University of Technology, 2010. |
17 |
GAIAS G , ARDAENS J , MONTENBRUCK O . Model of J2 perturbed satellite relative motion with time-varying differential drag[J]. Celestial Mechanics and Dynamical Astronomy, 2015, 123 (4): 411- 433.
doi: 10.1007/s10569-015-9643-2 |
18 | KOENIG A, GUFFANTI T, D'AMICO S. New state transition matrices for relative motion of spacecraft formations in perturbed orbits[C]//Proc. of the AIAA/AAS Astrodynamics Specialist Conference, 2016: 1749-1768. |
19 | BIRIA A, RUSSELL R. A satellite relative motion model using J2 and J3 via vinti's intermediary[C]//Proc. of the AIAA/AAS Space Flight Mechanics Conference, 2016. |
20 | GAIAS G, ARDAENS J S, D'AMICO S. The autonomous vision approach navigation and target identification (AVANTI) experiment: Objectives and design[C]//Proc. of the 9th International ESA Conference on Guidance, Navigation and Control Systems, 2014. |
21 | KOENIG A, D'AMICO S, MACINTOSH B, et al. Optimal formation design of a miniaturized distributed occulter/telescope in earth orbit[C]//Proc. of the AAS/AIAA Astrodynamics Specialist Conference, 2015. |
22 | KOLMAS J, BANAZADEH P, KOENIG A, et al. System design of a miniaturized distributed occulter/telescope for direct imaging of star vicinity[C]//Proc. of the IEEE Aerospace Conference, 2016. |
23 |
LI J . Analytical fuel-optimal impulsive reconfiguration of formation-flying satellites[J]. Optimal Control Applications and Methods, 2017, 38 (5): 720- 743.
doi: 10.1002/oca.2286 |
24 |
GAIAS G , D'AMICO S . Impulsive maneuvers for formation reconfiguration using relative orbital elements[J]. Journal of Guidance, Control, and Dynamics, 2015, 38 (6): 1036- 1049.
doi: 10.2514/1.G000189 |
25 |
CHERNICK M , D'AMICO S . New closed-form solutions for optimal impulsive control of spacecraft relative motion[J]. Journal of Guidance, Control, and Dynamics, 2018, 41 (2): 301- 319.
doi: 10.2514/1.G002848 |
26 |
CHERNICK M , D'AMICO S . Closed-form optimal impulsive control of spacecraft formations using reachable set theory[J]. Journal of Guidance, Control, and Dynamics, 2021, 44 (1): 25- 44.
doi: 10.2514/1.G005218 |
27 | ZHANG G , MORTARI D . Impulsive orbit correction using second-order Gauss's variational equations[J]. Celestial Mechanics and Dynamical Astronomy, 2020, 132 (2) |
28 |
MONTENBRUCK O , KIRSCHNER M , D'AMICO S , et al. E/I-vector separation for safe switching of the grace formation[J]. Aerospace Science and Technology, 2006, 10 (7): 628- 635.
doi: 10.1016/j.ast.2006.04.001 |
29 |
D'AMICO S , ARDAENS J S , LARSSON R . Spaceborne autonomous formation-flying experiment on the PRISMA mission[J]. Journal of Guidance, Control, and Dynamics, 2012, 35 (3): 834- 850.
doi: 10.2514/1.55638 |
30 |
ARDAENS J S , D'AMICO S . Spaceborne autonomous relative control system for dual satellite formations[J]. Journal of Guidance, Control and Dynamics, 2009, 32 (6): 1859- 1870.
doi: 10.2514/1.42855 |
31 | 张玉锟. 卫星编队飞行的动力学与控制技术研究[D]. 长沙: 国防科学技术大学, 2002. |
ZHANG Y K. Research on dynamics and control technology of satellite formation flying[D]. Changsha: National University of Defense Technology, 2002. | |
32 | ALFRIEND K , VADALI S R , GURFIL P , et al. Spacecraft formation flying: dynamics, control and navigation[M]. Oxford: Elsevier Press, 2009. |
33 |
GAIAS G , COLOMBO C , LARA M . Analytical framework for precise relative motion in low earth orbits[J]. Journal of Gui-dance, Control, and Dynamics, 2020, 43 (5): 915- 927.
doi: 10.2514/1.G004716 |
[1] | 王婷, 夏广庆, 兰聪超. 粒子群算法求解不等质量库仑卫星编队最优构型[J]. 系统工程与电子技术, 2016, 38(2): 305-313. |
[2] | 胡庆雷,张 健,马广富. 含时变时延的卫星编队姿态协同自适应滑模L2 增益控制[J]. 系统工程与电子技术, 2013, 35(11): 2356-2363. |
[3] | 涂佳, 谷德峰, 吴翊, 易东云. 基于星载双频GPS的长基线卫星编队高精度快速星间相对定位[J]. Journal of Systems Engineering and Electronics, 2011, 33(8): 1850-1855. |
[4] | 贺东雷, 曹喜滨, 马骏, 刘品雄. 基于相对偏心率/倾角矢量的编队控制方法[J]. Journal of Systems Engineering and Electronics, 2011, 33(4): 833-837. |
[5] | 周稼康, 胡庆雷, 马广富, 吕跃勇. 基于一致性算法的卫星编队姿轨耦合的协同控制[J]. Journal of Systems Engineering and Electronics, 2011, 33(4): 825-832. |
[6] | 冯成涛,王惠南,刘海颖. 基于虚拟结构的卫星编队机动控制[J]. Journal of Systems Engineering and Electronics, 2011, 33(1): 143-0145. |
[7] | 姚立红,李俊民. 一类非线性混合系统的脉冲混合控制器设计[J]. Journal of Systems Engineering and Electronics, 2010, 32(8): 1732-1736. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||