系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (8): 2463-2470.doi: 10.12305/j.issn.1001-506X.2023.08.20

• 传感器与信号处理 • 上一篇    下一篇

用于雷达信号分选的连通k近邻聚类算法

司伟建1,2, 张悦1,2, 邓志安1,2,*   

  1. 1. 哈尔滨工程大学信息与通信工程学院, 黑龙江 哈尔滨 150001
    2. 哈尔滨工程大学先进船舶通信与信息技术工业和信息化部重点实验室, 黑龙江 哈尔滨 150001
  • 收稿日期:2021-12-31 出版日期:2023-07-25 发布日期:2023-08-03
  • 通讯作者: 邓志安
  • 作者简介:司伟建(1971—), 男, 研究员, 博士, 主要研究方向为宽频带电子信息系统、宽带信号检测、处理与识别、无源测向
    张悦(1998—), 男, 硕士研究生, 主要研究方向为宽频带电子信息系统、雷达信号分选
    邓志安(1985—), 男, 副教授, 博士, 主要研究方向为电子侦察与人工智能应用
  • 基金资助:
    黑龙江省自然科学基金(LH2020F019);航空科学基金(2019010P6002)

Connected k-nearest neighbor clustering algorithm for radar signal sorting

Weijian SI1,2, Yue ZHANG1,2, Zhian DENG1,2,*   

  1. 1. College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
    2. Key Laboratory of Advanced Marine Communication and Information Technology, Ministry of Industry and Information Technology, Harbin Engineering University, Harbin 150001, China
  • Received:2021-12-31 Online:2023-07-25 Published:2023-08-03
  • Contact: Zhian DENG

摘要:

为了能够在密集且复杂多变的信号环境中进行实时有效的信号分选, 需要一种具有较低复杂度且能够根据信号环境自动调整参数的聚类方法。在模糊聚类算法的基础上结合k近邻搜索, 将λ邻域范围搜索变为λ邻域内k近邻搜索, 提出了连通k近邻聚类(connected k-nearest neighbor clustering, CkNNC)算法。相比模糊聚类算法, 所提算法时间复杂度降低而空间复杂度稍有增加。为使得该算法能够根据信号环境自动进行参数调整, 提出了基于k距离图的阈值参数确定方法。所提算法具有时间复杂度低与阈值参数自动确定的特点, 仿真结果表明所提算法与使用Calinski-Harabasz指标确定最佳阈值的低复杂度模糊聚类算法相比,分选效果差距不大、性能相近, 而时间复杂度大幅下降。

关键词: 电子对抗, 信号分选, 聚类, k近邻, k距离图

Abstract:

To perform real-time and effective signal sorting in a dense, complex, changeable signal environment, a clustering method with lower complexity and capable of automatically adjusting parameters according to the signal environment is required. Based on the fuzzy clustering algorithm, combined with k-nearest neighbor search, the λ-neighborhood search is changed to the k-nearest neighbor search in the λ-neighborhood, and a connected k-nearest neighbor clustering (CkNNC) algorithm is proposed. Compared with the fuzzy clustering algorithm, the proposed algorithm's time complexity is reduced while the proposed algorithm's space complexity is slightly increased. In order to enable the algorithm to automatically adjust parameters according to the signal environment, a threshold parameter determination method based on the k-distance graph is proposed. The proposed algorithm has the characteristics of low time complexity and automatic determination of threshold parameters. Simulation results show that the proposed algorithm is not far from the low-complexity fuzzy clustering algorithm that uses the Calinski-Harabasz index to determine the best threshold, and the performance is similar, and the time complexity is greatly reduced.

Key words: electronic countermeasures, signal sorting, clustering, k-nearest neighbor, k-distance graph

中图分类号: