1 |
YUN E , JIN Y S , LEE J H . A pedestrian detection scheme using a coherent phase difference method based on 2D range-Doppler FMCW radar[J]. Sensors, 2016, 16 (1): 124- 137.
doi: 10.3390/s16010124
|
2 |
TAKAHASHI R, HIRATA K, HARA T, et al. Coherent integration with null constraint on clutter spectrum for pulse Doppler radar[C]//Proc. of the IEEE Radar Conference, 2012: 68-73.
|
3 |
YANG H, HUANG P H, SUN Y Y, et al. Approach for range-ambiguous clutter suppression in an AEW radar system[C]//Proc. of the Asia-Pacific Conference on Synthetic Aperture Radar, 2021: 1-6.
|
4 |
HE X P , LIAO G S , ZHU S Q , et al. Range-ambiguous clutter suppression for the SAR-GMTI system based on extended azimuth phase coding[J]. IEEE Trans. on Geoscience and Remote Sensing, 2020, 58 (11): 8147- 8162.
doi: 10.1109/TGRS.2020.2987630
|
5 |
DUAN K Q , XU H , YUAN H , et al. Reduced-DOF three-dimensional STAP via subarray synthesis for nonsidelooking planar array airborne radar[J]. IEEE Trans. on Aerospace and Electronic Systems, 2020, 56 (4): 3311- 3325.
doi: 10.1109/TAES.2019.2958174
|
6 |
LI X P, WANG W J, YANG B, et al. Distance estimation based on phase detection with robust Chinese remainder theorem[C]//Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2014: 4204-4208.
|
7 |
JIANG Z B, WANG J, SONG Q, et al. A closed-form robust Chinese remainder theorem based multibaseline phase unwrapping[C]//Proc. of the International Conference on Circuits, Devices and Systems, 2017: 115-119.
|
8 |
LI X P , WANG W J , ZHANG W L , et al. Phase-detection-based range estimation with robust chinese remainder theorem[J]. IEEE Trans. on Vehicular Technology, 2016, 65 (12): 10132- 10137.
doi: 10.1109/TVT.2016.2550083
|
9 |
TRUNK G, BROCKETT S. Range and velocity ambiguity resolution[C]//Proc. of the IEEE National Radar Conference, 1993: 146-149.
|
10 |
王佳苗, 杨菊, 吴顺君. 一种脉冲多普勒雷达解距离模糊的新算法[J]. 雷达与对抗, 2005, (3): 38- 41.
|
|
WANG J M , YANG J , WU S J . A new algorithm of range ambiguity resolution for pulse Doppler radar[J]. RADAR & ECM, 2005, (3): 38- 41.
|
11 |
姚国国, 周业军, 刘小鲲. 脉冲多普勒雷达高重频测距技术设计与仿真[J]. 舰船电子工程, 2020, 40 (1): 71- 74.
|
|
YAO G G , ZHOU Y J , LIU X K . Design and simulation of HPRF range measurement technique for pulse Doppler radar[J]. Ship Electronic Engineering, 2020, 40 (1): 71- 74.
|
12 |
AYOUB T F , HAIMOVICH A M , PUGH M L . Reduced-rank STAP for high PRF radar[J]. IEEE Trans. on Aerospace and Electronic Systems, 1999, 35 (3): 953- 962.
doi: 10.1109/7.784065
|
13 |
WANG Y, ZHOU L, WEN J X, et al. Range ambiguity clutter suppression method for space-air based bistatic radar[C]//Proc. of the International Conference on Mechanical, Control and Computer Engineering, 2018: 355-360.
|
14 |
MELVIN W L . A STAP overview[J]. IEEE Aerospace and Electronic Systems Magazine, 2004, 19 (1): 19- 35.
doi: 10.1109/MAES.2004.1263229
|
15 |
WARD J. Space-time adaptive processing for airborne radar[R]. London: MIT Linclon Laboratory, 1994, 1015.
|
16 |
HE X P , LIAO G S , ZHU S Q , et al. Range ambiguous clutter suppression approach with elevation time diverse array[J]. IEEE Trans. on Aerospace and Electronic Systems, 2022, 58 (1): 359- 373.
doi: 10.1109/TAES.2021.3101786
|
17 |
XU J W , ZHU S Q , LIAO G S . Range ambiguous clutter suppression for airborne FDA-STAP radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9 (8): 1620- 1631.
doi: 10.1109/JSTSP.2015.2465353
|
18 |
XU J W , LIAO G S , So H C . Space-time adaptive processing with vertical frequency diverse array for range-ambiguous clutter suppression[J]. IEEE Trans. on Geoscience and Remote Sensing, 2016, 54 (9): 5352- 5364.
doi: 10.1109/TGRS.2016.2561308
|
19 |
MENG X D , WANG T , WU J X , et al. Short-range clutter suppression for airborne radar by utilizing prefiltering in elevation[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6 (2): 268- 272.
doi: 10.1109/LGRS.2008.2012126
|
20 |
HALE T B, TEMPLE M A, RAQUET J F, et al. Localized three-dimensional adaptive spatial-temporal processing for airborne radar[C]//Proc. of the International Radar Conference, 2002: 191-195.
|
21 |
CORBELL P M, TEMPLE M A, HALE T B. Forward-look-ing planar array 3D-STAP using space time illumination patterns (STIP)[C]//Proc. of the IEEE Workshop on Sensor Array and Multichannel Processing, 2006: 12-14.
|
22 |
CORBELL P M, PEREZ J J. RANGASWAM-Y M. Enhancing GMTI performance in non-stationary clutter using 3D STAP[C]//Proc. of the IEEE Radar Conference, 2007: 647-652.
|
23 |
王飞行, 汤广富, 贺思三, 等. 高重频频率步进雷达强杂波抑制[J]. 国防科技大学学报, 2009, 31 (4): 52- 57.
|
|
WANG F X , TANG G F , HE S S , et al. Severe clutter suppression in high PRF stepped-frequency radar[J]. Journal of National University of Defense Technology, 2009, 31 (4): 52- 57.
|
24 |
王飞行, 陈建军, 付强. 高重频频率步进雷达抑制折叠杂波方法[J]. 信号处理, 2010, 26 (3): 388- 393.
doi: 10.3969/j.issn.1003-0530.2010.03.011
|
|
WANG F X , CHEN J J , FU Q . A method of supppressing folded clutter in high PRF stepped frequency radar[J]. Signal Processing, 2010, 26 (3): 388- 393.
doi: 10.3969/j.issn.1003-0530.2010.03.011
|
25 |
BAO Y X, REN L X, HE P K, et al. A novel approach for clutter cancellation in HPRF stepped-frequency radar[C]// Proc. of the International Conference on Signal Processing, 2008: 2384-2387.
|
26 |
包云霞, 毛二可, 何佩琨, 等. 高重频频率步进雷达的杂波抑制和高分辨处理[J]. 现代雷达, 2009, 31 (1): 58- 61.
|
|
BAO Y X , MAO E K , HE P K , et al. Clutter cancellation and high resolution processing in HPRF stepped-frequency radar[J]. Modern Radar, 2009, 31 (1): 58- 61.
|
27 |
朱伟, 贺芃, 王凤艳, 等. 一种基于高重频波形的慢速目标检测新方法[J]. 雷达与对抗, 2019, 39 (2): 20- 23.
|
|
ZHU W , HE P , WANG F Y , et al. A novel method for slow-moving target detection based on high PRF waveform[J]. Radar & ECM, 2019, 39 (2): 20- 23.
|
28 |
XU J W , WANG C H , LIAO G S , et al. Sum and difference beamforming for angle-doppler estimation with STAP-based radars[J]. IEEE Trans. on Aerospace and Electronic Systems, 2016, 52 (6): 2825- 2837.
|
29 |
SARKAR T K , WANG H , PARK S , et al. A deterministic least-squares approach to space-time adaptive processing (STAP)[J]. IEEE Trans. on Antennas and Propagation, 2001, 49 (1): 91- 103.
|