14 |
BOCHKOYSKIY A, WANG C Y, LIAO H Y. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. [2022-03-31]. http://arxiv.org/abs/2004.10934.
|
15 |
FU Q, CHEN J, YANG W, et al. Nearshore ship detection on SAR image based on Yolov5[C]//Proc. of the 2nd China International SAR Symposium, 2021.
|
16 |
SONG T, SUNOK K, SUNGTAI K, et al. Context preserving instance level augmentation and deformable convolution networks for sar ship detection[EB/OL]. [2022-03-31]. http://arxiv.org/abs/2202.06513.
|
17 |
ZHU X K, LYU S C, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone capture scenarios[C]//Proc. of the IEEE International Conference on Computer Vision Workshops, 2021: 2778-2788.
|
18 |
CHOLLET F. Xception: deep learning with depthwise separable convolutions[EB/OL]. [2022-03-31]. http://arxiv.org/abs/1610.02357.
|
19 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
|
20 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proc. of the European Conference on Computer Vision, 2018: 3-19.
|
21 |
WANG Q L, WU B G, ZHU P F, et al. Efficient channel attention for deep convolutional neural networks[C]//Proc. of the Conference on Computer Vision and Pattern Recognition, 2019.
|
22 |
HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[EB/OL]. [2022-03-31]. http://arxiv.org/abs/2103.02907.
|
23 |
LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
|
24 |
ONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for bio-medical image segmentation[C]//Proc. of the International Conference on Medical Image Computing and Computer Assisted Intervention, 2015: 234-241.
|
25 |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proc. of the IEEE Confe-rence on Computer vision and Pattern Recognition, 2017: 2117-2125.
|
1 |
李海军, 魏嘉彧, 牟俊杰, 等. 雷达/红外复合制导空舰导弹搜捕问题综述[J]. 兵器装备工程学报, 2021, 42 (12): 1- 6.
|
|
LI H J , WEI J Y , MU J J , et al. Overview of radar/infrared composite guided air-to-ship missile hunting[J]. Journal of Ordnance Equipment Engineering, 2021, 42 (12): 1- 6.
|
2 |
CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proc. of the European Conference on Computer Vision, 2020: 213-229.
|
3 |
YAO Z Y, AI J Y, LI J B, et al. Efficient DETR: improving end-to-end object detector with dense prior[EB/OL]. [2022-03-31]. http://arxiv.org/abs/2104.01318.
|
4 |
HE K M, GKIOXARI G, P DOLLAR, et al. Mask R-CNN[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
|
5 |
REN S Q , HE K M , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Trans.on Pattern Analysis & Machine Intelligence, 2017, 39 (6): 1137- 1149.
|
6 |
CHEN X L, GUPTA A. An implementation of faster RCNN with study for region sampling[EB/OL]. [2022-03-31]. http://arXiv.org/abs/02138.
|
7 |
DAI J F, LI Y, HE K M, et al. R-FCN: object detection via region-based fully convolutional networks[EB/OL]. [2022-03-31]. http://arxiv.org/abs/1605.06409.
|
8 |
SINGH B, LI H D, SHARMA A, et al. R-FCN-3000 at 30 FPS: decoupling detection and classification[EB/OL]. [2022-03-31]. http://arxiv.org/abs/1712.01802.
|
9 |
WANG R F, XU F Y, PEI J F, et al. An improved faster R-CNN based on MSER decision criterion for SAR image ship detection in harbor[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2019: 1322-1325.
|
10 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multi-Box detector[C]//Proc. of the European Conference on Computer Vision, 2016: 21-37.
|
11 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
|
12 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
|
13 |
REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. [2022-03-31]. http://arxiv.org/abs/1804.02767.
|
26 |
LIU S T, HAUNG D, WANG Y H. Learning spatial fusion for single-shot object detection[EB/OL]. [2022-03-31]. http://arxiv.org.abs/1911.09516.
|
27 |
REZATOFIGHI H, TSOI N, GWEAK J Y, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 658-666.
|
28 |
HE J B, SARAH E, MA X J, et al. Alpha-IOU: a family of power intersection over union losses for bounding box regression[EB/OL]. [2022-03-31]. http://arxiv.org/abs/2110.16375.
|
29 |
李晨瑄, 顾佼佼, 王磊, 等. 多尺度特征融合的anchor-free轻量化舰船要害检测算法[J]. 北京航空航天大学学报, 2022, 48 (10): 2006- 2919.
|
|
LI C X , GU J J , WANG L , et al. Key detection algorithm of anchor-free light weight ship based on multiscale feature fusion[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48 (10): 2006- 2919.
|
30 |
PADILA R, NETTO S L, DA S E. A survey on performance metrics for object-detection algorithms[C]//Proc. of the International Conference on Systems, Signals and Image Processing, 2020: 237-242.
|