

系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (8): 2405-2414.doi: 10.12305/j.issn.1001-506X.2023.08.14
方伟, 梁静雯, 陆恒杨
收稿日期:2021-09-07
									
				
									
				
									
				
											出版日期:2023-07-25
									
				
											发布日期:2023-08-03
									
			通讯作者:
					方伟
												作者简介:方伟(1980—), 男, 教授, 博士研究生导师, 博士, 主要研究方向为智能优化算法、大数据分析基金资助:Wei FANG, Jingwen LIANG, Hengyang LU
Received:2021-09-07
									
				
									
				
									
				
											Online:2023-07-25
									
				
											Published:2023-08-03
									
			Contact:
					Wei FANG   
												摘要:
在遗传规划算法中, 种群多样性在避免早熟收敛方面有重要作用, 通过控制种群多样性改进算法是遗传规划算法的研究热点。从多样性角度改进算法的选择机制, 提出一种基于聚类锦标赛与父代匹配的遗传规划算法。通过聚类将种群划分为多个子种群, 从而调整算法的选择压力以维持种群多样性, 提高算法的搜索能力。此外, 提取个体的二进制特征, 利用局部匹配对父代进行针对性交叉操作, 从父代成对多样性的角度实现算法在探索和开发之间的较好平衡。对不同基准问题进行了多个对比实验, 实验结果表明所提算法在种群多样性上有较大改善, 在寻优能力和收敛速度上均取得了较好的提升。
中图分类号:
方伟, 梁静雯, 陆恒杨. 基于聚类锦标赛与父代匹配的遗传规划算法[J]. 系统工程与电子技术, 2023, 45(8): 2405-2414.
Wei FANG, Jingwen LIANG, Hengyang LU. Genetic programming algorithm based on cluster tournament and parent matching[J]. Systems Engineering and Electronics, 2023, 45(8): 2405-2414.
表4
不同算法在训练集上的实验结果"
| 名称 | SGP | FCGP | DPS+BR | TS-S | GACM | CMGP | 
| F1 | 0.24 | 0.14 | 0.22 | 0.45 | 0.29 | 0.09 | 
| F2 | 0.16 | 0.10 | 0.13 | 0.43 | 0.23 | 0.07 | 
| F3 | 20.45 | 16.71 | 16.17 | 28.21 | 17.30 | 15.70 | 
| F4 | 142.41 | 134.38 | 143.11 | 143.67 | 142.23 | 136.67 | 
| F5 | 1.00 | 0.02 | 0.48 | 4.43 | 5.14 | 0.00 | 
| F6 | 26.72 | 26.77 | 26.68 | 26.95 | 26.71 | 26.35 | 
| F7 | 24.78 | 23.51 | 23.52 | 24.13 | 23.36 | 23.46 | 
| F8 | 11.92 | 11.96 | 10.09 | 12.85 | 11.86 | 10.54 | 
表5
不同算法在测试集上的实验结果"
| 名称 | SGP | FCGP | DPS+BR | TS-S | GACM | CMGP | 
| F1 | 0.39 | 0.24 | 0.35 | 0.70 | 0.36 | 0.13 | 
| F2 | 0.27 | 0.17 | 0.14 | 0.83 | 0.32 | 0.09 | 
| F3 | 891.45 | 854.92 | 728.35 | 918.63 | 760.52 | 771.04 | 
| F4 | 671.52 | 632.45 | 676.49 | 686.93 | 682.61 | 640.12 | 
| F5 | 1.65 | 0.25 | 0.46 | 5.31 | 7.78 | 0.30 | 
| F6 | 33.76 | 31.65 | 32.28 | 30.53 | 30.58 | 28.73 | 
| F7 | 37.90 | 37.48 | 37.96 | 37.32 | 33.58 | 36.75 | 
| F8 | 28.72 | 26.32 | 28.62 | 26.67 | 25.26 | 24.57 | 
表6
不同算法解决问题时的节点个数比较"
| 名称 | SGP | FCGP | DPS+BR | TS-S | GACM | CMGP | 
| F1 | 39.90 | 49.24 | 36.36 | 14.60 | 54.60 | 29.80 | 
| F2 | 36.74 | 47.44 | 30.71 | 13.08 | 56.54 | 31.14 | 
| F3 | 54.82 | 63.02 | 43.60 | 12.45 | 44.32 | 39.24 | 
| F4 | 15.22 | 45.16 | 14.40 | 9.80 | 13.20 | 27.38 | 
| F5 | 43.64 | 44.20 | 43.60 | 34.60 | 44.60 | 33.60 | 
| F6 | 110.28 | 80.76 | 99.33 | 72.60 | 83.13 | 50.32 | 
| F7 | 131.96 | 128.08 | 139.47 | 126.20 | 122.13 | 61.84 | 
| F8 | 121.08 | 97.60 | 121.87 | 72.73 | 110.87 | 44.80 | 
表7
不同算法在解决问题时的运行时间比较"
| 名称 | SGP | FCGP | DPS+BR | TS-S | GACM | CMGP | 
| F1 | 19.30 | 28.97 | 81.16 | 27.59 | 86.12 | 33.85 | 
| F2 | 17.05 | 27.62 | 77.80 | 26.03 | 84.03 | 30.16 | 
| F3 | 20.34 | 27.30 | 120.17 | 26.12 | 95.25 | 32.20 | 
| F4 | 10.62 | 23.18 | 320.20 | 133.48 | 250.30 | 208.98 | 
| F5 | 76.88 | 90.44 | 255.60 | 139.43 | 231.73 | 207.75 | 
| F6 | 110.28 | 135.46 | 341.60 | 165.93 | 243.11 | 230.16 | 
| F7 | 131.52 | 178.64 | 468.80 | 239.50 | 273.51 | 250.80 | 
| F8 | 98.62 | 102.16 | 376.80 | 113.50 | 234.82 | 103.06 | 
| 1 | KOZA J R . Genetic programming: on the programming of computers by means of natural selection[M]. Cambridge: MIT press, 1992. | 
| 2 | 程适, 王锐, 伍国华, 等. 群体智能优化算法[J]. 郑州大学学报(工学版), 2018, 39 (6): 1- 2. | 
| CHENG S , WANG R , WU G H , et al. Swarm intelligence optimization algorithms[J]. Journal of Zhengzhou University (Engineering Science), 2018, 39 (6): 1- 2. | |
| 3 | LANGDON W B . Genetic programming and data structures[M]. London: Springer Science+Business Media, 1995. | 
| 4 | MOYANO J M , VENTURA S . Auto-adaptive grammar-guided genetic programming algorithm to build ensembles of multi-label classifiers[J]. Information Fusion, 2021, 78, 1- 19. | 
| 5 |  
											   NGUYEN T H ,  CAO T T ,  XUAN H N , et al.  Genetic programming for storm surge forecasting[J]. Ocean Engineering, 2020, 215, 107812. 
											 												 doi: 10.1016/j.oceaneng.2020.107812  | 
										
| 6 |  
											   AL-SAHAF H ,  AL-SAHAF A ,  XUE B , et al.  Automatically evolving texture image descriptors using the multi-tree representation in genetic programming using few instances[J]. Evolutionary Computation, 2021, 29 (3): 331- 366. 
											 												 doi: 10.1162/evco_a_00284  | 
										
| 7 | 贾凌云, 李冬妮, 田云娜. 基于混合蛙跳和遗传规划的跨单元调度方法[J]. 自动化学报, 2015, 41 (5): 936- 948. | 
| JIA L Y , LI D N , TIAN Y N . An intercell scheduling approach using shuffled frog leaping algorithm and genetic programming[J]. Acta Automatica Sinica, 2015, 41 (5): 936- 948. | |
| 8 | 贺晓宇. 基于遗传规划的混合社区云的调度方法研究[D]. 北京: 北京邮电大学, 2018. | 
| HE X Y. A genetic programming based scheduling approach for hybrid community clud[D]. Beijing: Beijing University of Posts and Telecommunications, 2018. | |
| 9 |  
											  陈浩杰, 丁国富, 张剑, 等.  求解资源受限多项目调度的改进遗传规划算法[J]. 中国机械工程, 2021, 32 (10): 1213- 1221. 
											 												 doi: 10.3969/j.issn.1004-132X.2021.10.010  | 
										
|  
											   CHEN H J ,  DING G F ,  ZHANG J , et al.  Improved genetic programming algorithm for RCMPSP[J]. China Mechanical Engineering, 2021, 32 (10): 1213- 1221. 
											 												 doi: 10.3969/j.issn.1004-132X.2021.10.010  | 
										|
| 10 | AFFENZELLER M, WINKLER S M, BURLACU B, et al. Dynamic observation of genotypic and phenotypic diversity for different symbolic regression GP variants[C]//Proc. of the Genetic and Evolutionary Computation Conference Companion, 2017: 1553-1558. | 
| 11 | KELLY J, HEMBERG E, O'REILLY U M. Improving genetic programming with novel exploration-exploitation control[C]//Proc. of the European Conference on Genetic Programming, 2019: 64-80. | 
| 12 | UCHII S. Darwin's principle of divergence[C]//Proc. of the 5th Quadrennial International Fellows Conference, 2004. | 
| 13 |  
											   SARENI B ,  KRAHENBUHL L .  Fitness sharing and niching methods revisited[J]. IEEE Trans.on Evolutionary Computation, 1998, 2 (3): 97- 106. 
											 												 doi: 10.1109/4235.735432  | 
										
| 14 | EKÁRT A, NÉMETH S Z. A metric for genetic programs and fitness sharing[C]//Proc. of the European Conference on Genetic Programming, 2000: 259-270. | 
| 15 | MAHFOUD S W. Niching methods for genetic algorithms[D]. Urbana-Champaign: University of Illinois, 1995. | 
| 16 |  
											   BARTOLI A ,  DELORENZO A ,  MEDVET E , et al.  Multi-level diversity promotion strategies for grammar-guided genetic programming[J]. Applied Soft Computing, 2019, 83, 105599. 
											 												 doi: 10.1016/j.asoc.2019.105599  | 
										
| 17 | 杨新武, 杨丽军. 基于交叉模型的改进遗传算法[J]. 控制与决策, 2016, 31 (10): 1837- 1844. | 
| YANG X W , YANG L J . An improved genetic algorithm based on crossover model[J]. Control and Decision, 2016, 31 (10): 1837- 1844. | |
| 18 | HELMUTH T, MCPHEE N F, SPECTOR L, et al. Lexicase selection for program synthesis: a diversity analysis. Genetic programming theory and practice XⅢ[M]. RIOLO R, WORZEL W P, KOTANCHEK M, et al. New York: Springer, 2016. | 
| 19 | CHU T H , NGUYEN Q U , O'NEILL M . Semantic tournament selection for genetic programming based on statistical analysis of error vectors[J]. Information Sciences, 2018, 436, 352- 366. | 
| 20 | BURLACU B, AFFENZELLER M, KRONBERGER G, et al. Online diversity control in symbolic regression via a fast hash-based tree similarity measure[C]//Proc. of the IEEE Congress on Evolutionary Computation, 2019: 2175-2182. | 
| 21 | DAY P , NANDI A K . Binary string fitnesscharacterization and comparative partner selection in genetic programming[J]. IEEE Trans.on Evolutionary Computation, 2008, 12 (6): 724- 735. | 
| 22 | ASLAM M W , ZHU Z , NANDI A K . Diverse partner selection with brood recombination in genetic programming[J]. Soft Computing, 2018, 67, 558- 566. | 
| 23 | CHEN Q , XUE B , ZHANG M J . Preserving population diversity based on transformed semantics in genetic programming for symbolic regression[J]. IEEE Trans.on Evolutionary Computation, 2020, 25 (3): 433- 447. | 
| 24 | ROSCA J P. Entropy-driven adaptive representation[C]//Proc. of the Workshop on Genetic Programming: from Theory to Real-World Applications, 1995: 23-32. | 
| 25 | O'REILLY U M. Using a distance metric on genetic programs to understand genetic operators[C]//Proc. of the IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, 1997: 4092-4097. | 
| 26 | KROVI R. Genetic algorithms for clustering: a preliminary investigation[C]//Proc. of the 25th Hawaii International Confe-rence on System Sciences, 1992: 540-544. | 
| 27 | YANG H Z, LI F C, WANG C M. A densityclustering based niching genetic algorithm for multimodal optimization[C]//Proc. of the International Conference on Machine Learning and Cybernetics, 2005: 1599-1604. | 
| 28 | XIE H Y , ZHANG M J . Parent selection pressure auto-tuning for tournament selection in genetic programming[J]. IEEE Trans.on Evolutionary Computation, 2012, 17 (1): 1- 19. | 
| 29 | DOERR B, KÖTZING T, LAGODZINSKI J A G, et al. Bounding bloat in genetic programming[C]//Proc. of the Genetic and Evolutionary Computation Conference, 2017: 921-928. | 
| 30 | GLICKMAN M R, SYCARA K. Reasons for premature convergence of self-adapting mutation rates[C]//Proc. of the 2000 Congress on Evolutionary Computation, 2000: 62-69. | 
| 31 | WHITE D R , MCDERMOTT J , CASTELLI M , et al. Better GP benchmarks: community survey results and proposals[J]. Genetic Programming and Evolvable Machines, 2013, 14 (1): 3- 29. | 
| 32 | ASUNCION A, NEWMAN D. UCI machinelearningrepository[EB/OL]. [2021-09-07]. https://archive.ics.uci.edu/ml/datasets.php. | 
| 33 | TACKETT W A. Recombination, selection, and the genetic construction of computer programs[D]. Los Angeles: University of Southern California, 1994. | 
| [1] | 王湖升, 陈伯孝, 叶倾知. 基于箔条干扰实测数据的对抗方法研究[J]. 系统工程与电子技术, 2023, 45(7): 2010-2021. | 
| [2] | 杨帆, 马萍, 李伟, 杨明. 基于孪生网络的仿真模型智能排序评估方法[J]. 系统工程与电子技术, 2023, 45(7): 2060-2068. | 
| [3] | 马泽煊, 李进, 路艳丽, 陈晨. 融合WaveNet和BiGRU的网络入侵检测方法[J]. 系统工程与电子技术, 2022, 44(8): 2652-2660. | 
| [4] | 李郝亮, 陈思伟, 王雪松. 海面角反射器的极化旋转域特性研究[J]. 系统工程与电子技术, 2022, 44(7): 2065-2073. | 
| [5] | 徐任杰, 宫琳, 朱明仁, 谢剑, 俞景嘉. 不确定信息下考虑相关性与多样性的作战方案推荐方法[J]. 系统工程与电子技术, 2022, 44(10): 3115-3123. | 
| [6] | 朱峰, 蒋倩倩, 林川, 杨啸. 基于支持向量机的典型宽带电磁干扰源识别[J]. 系统工程与电子技术, 2021, 43(9): 2400-2406. | 
| [7] | 来磊, 邹鲲, 吴德伟, 李保中. 交互策略改进MOFA进化的多UAV协同航迹规划[J]. 系统工程与电子技术, 2021, 43(8): 2282-2289. | 
| [8] | 王力, 刘子奇. WPA-IGA-BP神经网络的模拟电路故障诊断[J]. 系统工程与电子技术, 2021, 43(4): 1133-1143. | 
| [9] | 陈浩, 杨俊安, 刘辉. 基于深度残差适配网络的通信辐射源个体识别[J]. 系统工程与电子技术, 2021, 43(3): 603-609. | 
| [10] | 张国令, 吴崇明, 李睿, 来杰, 向前. 基于一维堆叠池化融合卷积自编码器的HRRP目标识别方法[J]. 系统工程与电子技术, 2021, 43(12): 3533-3541. | 
| [11] | 赵若辰, 王敬东, 林思玉, 顾东泽. 基于卷积神经网络的小型建筑物检测算法[J]. 系统工程与电子技术, 2021, 43(11): 3098-3106. | 
| [12] | 张天骐, 范聪聪, 喻盛琪, 赵健根. 基于JADE与特征提取的正交/非正交空时分组码盲识别[J]. 系统工程与电子技术, 2020, 42(4): 933-939. | 
| [13] | 弋佳东, 杨洁. 基于IFOA-SA-BP神经网络的雷达信号识别[J]. 系统工程与电子技术, 2020, 42(12): 2735-2741. | 
| [14] | 李波, 张琳, 汪文峰, 王冠男. 基于Park-HHT的故障特征提取方法[J]. 系统工程与电子技术, 2020, 42(12): 2944-2952. | 
| [15] | 方章闻, 张金艺, 李科, 姜玉稀. 小样本条件下的通信辐射源半监督特征提取[J]. 系统工程与电子技术, 2020, 42(10): 2381-2389. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||