系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (8): 2370-2376.doi: 10.12305/j.issn.1001-506X.2023.08.10

• 电子技术 • 上一篇    下一篇

不确定性建模在2D和3D目标检测中的应用

汪萌, 诸兵   

  1. 北京航空航天大学自动化科学与电气工程学院, 北京 100191
  • 收稿日期:2022-06-17 出版日期:2023-07-25 发布日期:2023-08-03
  • 通讯作者: 诸兵
  • 作者简介:汪萌(1998—), 男, 硕士研究生, 主要研究方向为目标检测在自动驾驶中的应用
    诸兵(1985—), 男, 副教授, 博士, 主要研究方向为自动驾驶中的智能感知与控制
  • 基金资助:
    国家自然科学基金资助课题(62073015)

Application of uncertainty modeling in 2D and 3D object detection

Meng WANG, Bing ZHU   

  1. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
  • Received:2022-06-17 Online:2023-07-25 Published:2023-08-03
  • Contact: Bing ZHU

摘要:

目标检测算法在自动驾驶领域有着不可或缺的地位, 其检测精度和速度往往可以作为评判一个自动驾驶系统好坏的标准。如何提升目标检测精度和速度已成为当前目标检测算法的主要研究方向。对此, 提出了一种基于不确定性建模的目标检测改进算法, 在原有二维单次多柜检测器上通过对物体的边界框进行高斯建模并引入新的位置损失函数, 实现对原有检测结果的微调。同时, 在原有单阶单目三维检测器的基础上引入深度以及航向角的不确定性来调整目标在热力图中的高斯半径, 并用马氏距离替代原有的L1距离以提升对较远目标和斜向目标的识别率。对比实验证明, 改进后的2D和3D检测算法在KITTI自动驾驶数据集上对比原始2D和3D算法, 检测精度分别提升了近5%和2%。

关键词: 深度学习, 目标检测, 自动驾驶, 不确定性建模

Abstract:

Object detection algorithm plays an indispensable role in the field of autopilot. Its detection accuracy and speed can often be used as the standard to judge the quality of an auto drive system. How to improve the accuracy and speed of object detection has become the main research direction of the current object detection algorithm. Therefore, an improved object detection algorithm based on uncertainty modeling is proposed. Based on the original two-dimensional (2D) single shot multibox detector (SSD) object detection algorithm, the original detection results are finely tuned by Gaussian modeling the boundary box of the object and introducing a new position loss function. At the same time, based on the original three-dimensional (3D) single-stage monocular (SMOKE) object detection algorithm, the uncertainty of depth and heading angle is introduced to adjust the Gaussian radius of the target in the heatmap, and the Mahalanobis distance is used to replace the original L1 distance to improve the recognition rate of distant targets and oblique targets. Comparative experiments proves that the detection accuracy of the improved 2D and 3D detection algorithms is improved by nearly 5% and 2% respectively compared with the original 2D and 3D algorithms on the KITTI autonomous driving dataset.

Key words: deep learning, object detection, autonomous driving, uncertainty modeling

中图分类号: