1 |
KIRAN B R , SOBH I , TALPAERT V , et al. Deep reinforcement learning for autonomous driving: a survey[J]. IEEE Trans.on Intelligent Transportation Systems, 2021, 99 (2): 1- 18.
|
2 |
VAFAEIPOUR M , RAHBARI O , ROSEN M A , et al. Application of sliding window technique for prediction of wind velocity time series[J]. International Journal of Energy and Environmental Engineering, 2014, 5 (2): 1- 7.
|
3 |
UIJLINGS J R R , VAN DE SANDE K E A , GEVERS T , et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104 (2): 154- 171.
doi: 10.1007/s11263-013-0620-5
|
4 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
|
5 |
GIRSHICK R. Fast R-CNN[C]//Proc. of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
|
6 |
REN S Q , HE K M , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
7 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proc. of the European Conference on Computer Vision, 2016: 21-37.
|
8 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
|
9 |
IANDOLA F N, HAN S, MOSKEWICZ M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5 MB model size[EB/OL]. [2022-06-17]. https://arxiv.org/abs/1602.07360.
|
10 |
HOWARD A G, ZHU M L, CHEN B, et al. Mobilenets: efficient convolutional neural networks for mobile vision applications[EB/OL]. [2022-06-17]. https://arxiv.org/abs/1704.04861.
|
11 |
MOUSAVIAN A, ANGUELOV D, FLYNN J, et al. 3D bounding box estimation using deep learning and geometry[C]// Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7074-7082.
|
12 |
LI B Y, OUYANG W L, SHENG L, et al. Gs3D: an efficient 3D object detection framework for autonomous driving[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 1019-1028.
|
13 |
QIN Z Y, WANG J L, LU Y. Monogrnet: a geometric reasoning network for monocular 3d object localization[C]//Proc. of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 8851-8858.
|
14 |
ZHOU X Y, WANG D Q, KRÄHENBVHL P. Objects as points[EB/OL]. [2022-06-17]. https://arxiv.org/abs/1904.07850.
|
15 |
CHOI J, CHUN D, KIM H, et al. Gaussian YOLOv3: an accurate and fast object detector using localization uncertainty for autonomous driving[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2019: 502-511.
|
16 |
HE Y H, ZHANG X Y, SAVVIDES M, et al. Softer-NMS: rethinking bounding box regression for accurate object detection[EB/OL]. [2022-06-17]. https://arxiv.org/abs/1809.08545v1.
|
17 |
LU Y, MA X Z, YANG L, et al. Geometry uncertainty projection network for monocular 3d object detection[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2021: 3111-3121.
|
18 |
LIU Z C, WU Z Z, TÓTH R. SMOKE: single-stage monocular 3D object detection via keypoint estimation[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020: 996-997.
|
19 |
GEIGER A , LENZ P , STILLER C , et al. Vision meets robo-tics: the kitti dataset[J]. The International Journal of Robotics Research, 2013, 32 (11): 1231- 1237.
doi: 10.1177/0278364913491297
|
20 |
XU B, CHEN Z Z. Multi-level fusion based 3D object detection from monocular images[C]//Proc. of the IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition, 2018.
|
21 |
MOUSAVIAN A, ANGUELOV D, FLYNN J, et al. 3D Bounding box estimation using deep learning and geometry[C]Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
|