系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (8): 2332-2342.doi: 10.12305/j.issn.1001-506X.2023.08.06

• “组织战略管理与体系总体设计——庆祝国防科技大学办学70周年”专栏 • 上一篇    下一篇

基于态势演化博弈的无人机集群动态攻防

盛磊1,2, 时满红1, 亓迎川1,*, 李浩1, 庞明军2   

  1. 1. 空军预警学院, 湖北 武汉 430000
    2. 中国人民解放军95894部队, 北京 100000
  • 收稿日期:2023-05-05 出版日期:2023-07-25 发布日期:2023-08-03
  • 通讯作者: 亓迎川
  • 作者简介:盛磊 (1994—), 男, 硕士研究生, 主要研究方向为无人机集群控制与运用
    时满红 (1976—), 男, 讲师, 硕士, 主要研究方向为飞行器控制
    亓迎川 (1965—), 男, 教授, 硕士研究生导师, 博士, 主要研究方向为无人机控制技术及运用
    李浩 (1981—), 男, 教授, 博士, 主要研究方向为无人机集群运用
    庞明军 (1983—), 男, 本科, 工程师, 主要研究方向为无人机技术与运用
  • 基金资助:
    国家自然科学基金(61502522)

Dynamic offense and defense of UAV swarm based on situation evolution game

Lei SHENG1,2, Manhong SHI1, Yingchuan QI1,*, Hao LI1, Mingjun PANG2   

  1. 1. Air Force Early Warning Academy, Wuhan 430000, China
    2. Unit 95894 of the PLA, Beijing 100000, China
  • Received:2023-05-05 Online:2023-07-25 Published:2023-08-03
  • Contact: Yingchuan QI

摘要:

针对无人机集群动态攻防问题, 提出了态势演化博弈模型。首先,从基地与守方无人机集群相互作用以及攻防双方动态斗争角度出发, 构建了攻方无人机与守方无人机的态势演化博弈模型。其次,设计了同态势演化博弈模型相对应的态势评估函数, 使每阶段个体的策略选择都为该阶段的最优解。然后,根据策略选择, 结合社会力模型, 驱动无人机向指定目标运动, 完成攻防双方无人机集群的动态对抗。实验结果表明, 无人机集群的动态运动符合空战情况, 验证了基地在具备功能时的优越性, 以及设计的态势演化博弈模型能够实现无人机集群对抗决策的自适应选择。

关键词: 无人机, 演化博弈, 态势评估, 智能体决策, 集群对抗策略

Abstract:

To solve the problem of dynamic offense and defense in unmanned aerial vehicle (UAV) swarms, a situation evolution game model is proposed. Firstly, building upon the interactions between both the base and the defender's UAV swarms, as well as the descriptions of the dynamic struggle between offender and defender, a situation evolution game model is established by taking into account situation evolution among offending and defending UAVs. Secondly, a corresponding situation evaluation function is designed to optimize individual strategy selection at each stage of combat. Then, based on this strategy selection and through the use of the social force model, the UAVs are driven to move towards designated targets, resulting in a dynamic confrontation between the offending and defending UAV swarms. Experimental results demonstrate that the dynamic movement of the UAV swarms conforms to those observed in actual air combat scenarios, verifies the superior position of a functioning base, and confirms the accuracy of the UAV swarms'adaptive decision-making through the use of the situation evolution game model.

Key words: unmanned aerial vehicle (UAV), evolutionary game, situation assessment, agent decision-making, swarm confrontation strategy

中图分类号: