1 |
殷瑞钰, 李伯聪, 汪应洛. 工程方法论[M]. 北京: 高等教育出版社, 2017.
|
|
YIN R Y , LI B C , WANG Y L . Engineering Methodology[M]. Beijing: Higher Education Press, 2017.
|
2 |
Office of the Deputy under Secretary of Defense for Acquisition and Technology, Systems and Software Engineering[R]. Systems Engineering Guide for Systems of Systems, V1. Washington DC: Department of Defense, 2008.
|
3 |
MAIER M W . Architecting principles for system-of-system[J]. Systems Engineering, 1998, 1 (4): 267- 284.
doi: 10.1002/(SICI)1520-6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D
|
4 |
MAIER M W. Research challenges for system-of-systems[C]//Proc. of the IEEE International Conference on Systems, 2006: 3149-3154.
|
5 |
The International Council in Systems Engineering . System engineering handbook—a guide for system life cycle processes and activities[M]. San Diego: John Wiley & Sons, 2015.
|
6 |
ZHANG H J, HUANG B Q, ZHANG P, et al. A new index for SoS reliability-viability[C]//Proc. of the 12th International Conference on Reliability, Maintainability, and Safety, 2018.
|
7 |
潘星, 张振宇, 张曼丽, 等. 基于SoSE的装备体系RMS论证方法研究[J]. 系统工程与电子技术, 2019, 41 (8): 1771- 1779.
|
|
PAN X , ZHANG Z Y , ZHANG M L , et al. Research on RMS demonstration method of equipment SoS based on SoSE[J]. Systems Engineering and Electronics, 2019, 41 (8): 1771- 1779.
|
8 |
李小波, 林木, 束哲, 等. 体系贡献率能效综合评估方法[J]. 系统仿真学报, 2018, 30 (12): 4520-4528, 4535
|
|
LI X B , LIN M , SHU Z , et al. Synthesized capability-effectiveness evaluation method of contribution ratio to system-of-systems[J]. Journal of System Simulation, 2018, 30 (12): 4520-4528, 4535
|
9 |
HOLLING C S . Resilience and stability of ecological systems[J]. Annual Review of Ecology and Systematics, 1973, 4, 1- 23.
doi: 10.1146/annurev.es.04.110173.000245
|
10 |
SCOTT L. Engineered resilient systems DoD science and technology priority[R]. Washington DC: Office of the Deputy Assistant Secretary of Defense for Systems Engineering, 2012.
|
11 |
HOLLAND J P. Engineered resilient systems (ERS) overview[R]. Mississippi: U.S. Army Engineer Research and Development Center, 2013.
|
12 |
潘星, 张国忠, 张跃东, 等. 工程弹性系统与系统弹性理论研究综述[J]. 系统工程与电子技术, 2019, 41 (9): 2006- 2015.
|
|
PAN X , ZHANG G Z , ZHANG Y D , et al. Review of engineered resilient systems and system resilience theory[J]. Systems Engineering and Electronics, 2019, 41 (9): 2006- 2015.
|
13 |
李震, 崔骁松, 孙晨旭, 等. 基于时间和任务重要度的系统弹性恢复研究[J]. 计算机与数字工程, 2021, 49 (11): 2213- 2217.
doi: 10.3969/j.issn.1672-9722.2021.11.009
|
|
LI Z , CUI X S , SUN C X , et al. Research on system resilience recovery based on time and task importance[J]. Computer & Digital Engineering, 2021, 49 (11): 2213- 2217.
doi: 10.3969/j.issn.1672-9722.2021.11.009
|
14 |
CASABLANCA R M , CRIADO R , MESA J A , et al. A comprehensive approach for discrete resilience of complex networks[J]. Chaos, 2023, 33 (1): 013111.
doi: 10.1063/5.0124687
|
15 |
SAMPAIO F C G , FILHO R N C , GUTERRES M X . Modeling resilience of air traffic management systems based on complex networks[J]. Journal of Aerospace Technology and Mana-gement, 2022, 14 (1)
|
16 |
齐小刚, 张碧雯, 刘立芳, 等. 复杂信息网络的弹性评估和优化方法研究[J]. 计算机科学与探索, 2018, 12 (8): 1252- 1262.
|
|
QI X G , ZHANG B W , LIU L F , et al. Evaluation and optimi zation of complex network resilience against attacks[J]. Journal of Frontiers of Computer Science and Technology, 2018, 12 (8): 1252- 1262.
|
17 |
杨琦, 张雅妮, 周雨晴, 等. 复杂网络理论及其在公共交通韧性领域的应用综述[J]. 中国公路学报, 2022, 35 (4): 215- 229.
doi: 10.3969/j.issn.1001-7372.2022.04.018
|
|
YANG Q , ZHANG Y N , ZHOU Y Q , et al. A review of complex network theory and its application in the resilience of public transportation systems[J]. China Journal of Highway and Transport, 2022, 35 (4): 215- 229.
doi: 10.3969/j.issn.1001-7372.2022.04.018
|
18 |
BEER S . The viable system model: its provenance, development, methodology and pathology[J]. Journal of the Operational Research Society, 1984, 35 (1): 7- 25.
|
19 |
HOLLAND J H . Hidden order[M]. Boston: Addison-Wesley Press, 1995.
|
20 |
郭雷, 程代展, 冯德兴. 控制理论导论-从基本概念到研究前沿[M]. 北京: 中国科学出版社, 2005.
|
|
GUO L , CHENG D Z , FENG D X . Introduction to control theory-from basic concepts to research frontiers[M]. Beijing: China Science Press, 2005.
|
21 |
柴天佑, 岳恒. 自适应控制[M]. 北京: 清华大学出版社, 2016.
|
|
CHAI T Y , YUE H . Adaptive control[M]. Beijing: Tsinghua University Press, 2016.
|
22 |
LEE J, KAO H A. Recent advances and trends of cyber-physical systems and big data analytics in industrial informatics[C]// Proc. of the International Conference on Industrial Informa- tics, 2014.
|
23 |
LEE J , BAGHERI B , KAO H A . A cyber-physical systems architecture for industry 4.0-based manufacturing systems[J]. Manufacturing Letters, 2015, 3, 18- 23.
|
24 |
王维平, 李小波, 杨松, 等. 智能化多无人集群作战体系动态适变机制设计方法[J]. 系统工程理论与实践, 2021, 41 (5): 1096- 1106.
|
|
WANG W P , LI X B , YANG S , et al. A design method of dynamic adaption mechanism for intelligent multi-unmanned-cluster combat system-of-systems[J]. System Engineering-Theory & Practice, 2021, 41 (5): 1096- 1106.
|
25 |
BRYSON B . The body—a guide for occupants[M]. New York: World Digital Press, 2019.
|
26 |
TURING A M . Computing machinery and intelligence[J]. Mind, 1995, 59, 433- 460.
|
27 |
WIENER N . Human use of human beings-cybernetics and society[M]. Massachusetts: The Riverside Press, 1950.
|
28 |
SCHRODINGER E . What is life? The physical aspect of the living cell[M]. Cambridge: Cambridge University Press, 1944.
|
29 |
张宏军, 黄百乔, 鞠鸿彬, 等. 体系生命力理论框架[J]. 科技导报, 2018, 36 (20): 20- 26.
|
|
ZHANG H J , HUANG B Q , JU H B , et al. Theoretical framework of SoS vitality[J]. Science & Technology Review, 2018, 36 (20): 20- 26.
|
30 |
张宏军, 黄百乔, 罗永亮, 等. 从降维解析到映射升维——复杂工程系统原理探索[M]. 北京: 电子工业出版社, 2020.
|
|
ZHANG H J , HUANG B Q , LUO Y L , et al. From dimension reduction analysis to mapping dimension increasing-exploration on the primciple of complex engineering system[M]. Beijing: Electronic Industry Press, 2020.
|
31 |
张宏军, 邱伯华, 魏慕恒, 等. 工程体系基于V++规则引擎的生态演进[M]. 北京: 电子工业出版社, 2021.
|
|
ZHANG H J , QIU B H , WEI M H , et al. The ecological evolution of engineering system of systems based on the V++ rule engine[M]. Beijing: Electronic Industry Press, 2021.
|
32 |
张宏军, 黄百乔. 基于规则的复杂工程系统设计方法[J]. 系统工程学报, 2023, 38 (2): 283- 288.
|
|
ZHANG H J , HUANG B Q . Rules-based complex engineering system design methods[J]. Journal of System Engineering, 2023, 38 (2): 283- 288.
|
33 |
PENNEY H R, OLSEN M C, DEPTULA D A. Beyond pixie dust: a framework for understanding and developing autonomy in unmanned aircraft[R]. Arlington: The Mitchell Institute for Aerospace Studies, 2022.
|