1 |
BIHL T J , BAUER K W , TEMPLE M A . Feature selection for RF fingerprinting with multiple discriminant analysis and using ZigBee device emissions[J]. IEEE Trans.on Information Forensics and Security, 2017, 11 (8): 1862- 1874.
|
2 |
PATEL H J , TEMPLE M A , BALDWIN R O . Improving ZigBee device network authentication using ensemble decision tree classifiers with radio frequency distinct native attribute fingerprinting[J]. IEEE Trans.on Reliability, 2015, 64 (1): 221- 233.
doi: 10.1109/TR.2014.2372432
|
3 |
RAMSEY B W, TEMPLE M A, MULLINS B E. PHY foundation for multi-factor ZigBee node authentication[C]//Proc. of the IEEE Global Communications Conference, 2012: 795-800.
|
4 |
KENNEDY I O, SCANLON P, MULLANY F J. Radio transmitter fingerprinting: a steady state frequency domain approach[C]//Proc. of the 68th IEEE Vehicular Technology Conference, 2008.
|
5 |
HUANG N E , SHEN Z , LONG S R , et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1998, 454 (1971): 903- 995.
doi: 10.1098/rspa.1998.0193
|
6 |
XU S H, HUANG B X, XU L N, et al. Radio transmitter classification using a new method of stray features analysis combined with PCA[C]//Proc. of the IEEE Military Communications Conference, 2007.
|
7 |
刘明骞, 颜志文, 张俊林. 空中目标辐射源的个体识别方法[J]. 系统工程与电子技术, 2019, 41 (11): 2408- 2415.
|
|
LIU M Q , YAN Z W , ZHANG J L . Specific emitter identification method for aerial target[J]. Systems Engineering and Electronics, 2019, 41 (11): 2408- 2415.
|
8 |
PENG L N, HU A Q, YU J B, et al. A differential constellation trace figure based device identification method for ZigBee nodes[C]//Proc. of the IEEE International Conference on Wireless Communications & Signal Processing, 2016.
|
9 |
彭林宁, 胡爱群, 朱长明, 等. 基于星座轨迹图的射频指纹提取方法[J]. 信息安全学报, 2016, 1 (1): 50- 58.
doi: 10.19363/j.cnki.cn10-1380/tn.2016.01.007
|
|
PENG L N , HU A Q , ZHU C M , et al. Radio frequency fingerprint extraction method based on constellation trace figure[J]. Journal of Information Security, 2016, 1 (1): 50- 58.
doi: 10.19363/j.cnki.cn10-1380/tn.2016.01.007
|
10 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2021-10-02]. https://arxiv.org/abs/1409.1556.
|
11 |
SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2015.
|
12 |
王炳程. 通信设备指纹识别关键技术研究[D]. 成都: 电子科技大学, 2019.
|
|
WANG B C. Research on key technology of fingerprint identification of communication equipment[D]. Chengdu: University of Electronic Science and Technology of China, 2019.
|
13 |
DING L D , WANG S L , WANG F G , et al. Specific emitter identification via convolutional neural networks[J]. IEEE Communications Letters, 2018, 22, 2591- 2594.
doi: 10.1109/LCOMM.2018.2871465
|
14 |
WONG L J , HEADLEY W C , MICHAELS A J . Specific emitter identification using convolutional neural network-based IQ imbalance estimators[J]. IEEE Access, 2019, 7, 33544- 33555.
doi: 10.1109/ACCESS.2019.2903444
|
15 |
MERCHANT K , REVAY S , STANTCHEV G , et al. Deep learning for RF device fingerprinting in cognitive communication networks[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12 (2): 160- 167.
|
16 |
SANKHE K , BELGIOVINE M , ZHOU F , et al. No radio left behind: radio fingerprinting through deep learning of physical-layer hardware impairments[J]. IEEE Trans.on Cognitive Communications and Networking, 2019, 6 (1): 165- 178.
|
17 |
QING G W , WANG H F , ZHANG T P . Radio frequency fingerprinting identification for Zigbee via lightweight CNN[J]. Physical Communication, 2021, 44 (1): 101250.
|
18 |
ZHOU X Y , HU A Q , LI G Y , et al. A robust radio-frequency fingerprint extraction scheme for practical device recognition[J]. IEEE Internet of Things Journal, 2021, 8 (14): 11276- 11289.
doi: 10.1109/JIOT.2021.3051402
|
19 |
WONG L J, HEADLEY W C, ANDREWS S, et al. Clustering learned CNN features from raw I/Q data for emitter identification[C]//Proc. of the MILCOM IEEE Military Communications Conference, 2018: 26-33.
|
20 |
吴子龙, 陈红, 雷迎科, 等. 基于堆栈式LSTM网络的通信辐射源个体识别[J]. 系统工程与电子技术, 2020, 42 (12): 2915- 2923.
doi: 10.3969/j.issn.1001-506X.2020.12.30
|
|
WU Z L , CHEN H , LEI Y K , et al. Communication emitter individual identification based on stacked LSTM network[J]. Systems Engineering and Electronics, 2020, 42 (12): 2915- 2923.
doi: 10.3969/j.issn.1001-506X.2020.12.30
|
21 |
秦嘉. 基于深度学习的通信辐射源个体识别[D]. 北京: 北京邮电大学, 2019.
|
|
QIN J. Individual identification of communication radiators based on deep learning[D]. Beijing: Beijing University of Posts and Telecommunications, 2019.
|
22 |
LIU Y H , XU H , QI Z S , et al. Specific emitter identification against unreliable features interference based on time-series classification network structure[J]. IEEE Access, 2020, 8, 200194- 200208.
doi: 10.1109/ACCESS.2020.3035813
|
23 |
WANG Y , GUI G , GACANIN H , et al. An efficient specific emitter identification method based on complex-valued neural networks and network compression[J]. IEEE Journal on Selected Areas in Communications, 2021, 39 (8): 2305- 2317.
doi: 10.1109/JSAC.2021.3087243
|
24 |
WANG S H , JIANG H L , FANG X F , et al. Radio frequency fingerprint identification based on deep complex residual network[J]. IEEE Access, 2020, 8, 204417- 204424.
doi: 10.1109/ACCESS.2020.3037206
|
25 |
牛伟宇, 许华, 刘英辉, 等. 基于PACGAN与差分星座轨迹图的辐射源个体识别[J]. 信号处理, 2021, 37 (8): 1559- 1567.
|
|
NIU W Y , XU H , LIU Y H , et al. Individual identification method based on PACGAN and differential constellation trace figure[J]. Signal Processing, 2021, 37 (8): 1559- 1567.
|
26 |
方章闻, 张金艺, 李科, 等. 小样本条件下的通信辐射源半监督特征提取[J]. 系统工程与电子技术, 2020, 42 (10): 2381- 2389.
doi: 10.3969/j.issn.1001-506X.2020.10.29
|
|
FANG Z W , ZHANG J Y , LI K , et al. Semi-supervised feature extraction of communication emitter under small sample condition[J]. Systems Engineering and Electronics, 2020, 42 (10): 2381- 2389.
doi: 10.3969/j.issn.1001-506X.2020.10.29
|
27 |
陈浩, 杨俊安, 刘辉. 基于深度残差适配网络的通信辐射源个体识别[J]. 系统工程与电子技术, 2021, 43 (3): 603- 609.
|
|
CHEN H , YANG J A , LIU H . Communication transmitter individual identification based on deep residual adaptation network[J]. Systems Engineering and Electronics, 2021, 43 (3): 603- 609.
|
28 |
PAN Y W , YANG S H , PENG H . Specific emitter identification based on deep residual networks[J]. IEEE Access, 2019, 7, 54425- 54434.
doi: 10.1109/ACCESS.2019.2913759
|
29 |
PENG L N , ZHANG J Q , LIU M , et al. Deep learning based RF fingerprint identification using differential constellation trace figure[J]. IEEE Trans.on Vehicular Technology, 2020, 69 (1): 1091- 1095.
doi: 10.1109/TVT.2019.2950670
|
30 |
SNELL J , SWERSKY K , ZEMEL R S . Prototypical networks for few-shot learning[J]. Advances in Neural Information Processing Systems, 2017, 30, 4077- 4087.
|
31 |
STANISLAV F. Gaussian prototypical networks for few-shot learning on omniglot[EB/OL]. [2021-10-02]. https://arxiv.org/abs/1708.02735.
|
32 |
YANG H M, ZHANG X Y, YIN F, et al. Robust classification with convolutional prototype learning[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 3474-3482.
|
33 |
YANG H M , ZHANG X Y , YIN F , et al. Convolutional prototype network for open set recognition[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2020, 44 (5): 2385- 2370.
|
34 |
SHU Y , SHI Y M , WANG Y W , et al. P-ODN: prototype-based open deep network for open set recognition[J]. Scientific Reports, 2020, 10, 7146.
|
35 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
36 |
LIU C L , NAKAGAWA M . Evaluation of prototype learning algorithms for nearest-neighbor classifier in application to handwritten character recognition[J]. Pattern Recognition, 2001, 34 (3): 601- 615.
|
37 |
IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proc. of the 32nd International Conference on Machine Learning, 2015: 448-456.
|