| 1 | BIHL T J ,  BAUER K W ,  TEMPLE M A .  Feature selection for RF fingerprinting with multiple discriminant analysis and using ZigBee device emissions[J]. IEEE Trans.on Information Forensics and Security, 2017, 11 (8): 1862- 1874. | 
																													
																						| 2 | PATEL H J ,  TEMPLE M A ,  BALDWIN R O .  Improving ZigBee device network authentication using ensemble decision tree classifiers with radio frequency distinct native attribute fingerprinting[J]. IEEE Trans.on Reliability, 2015, 64 (1): 221- 233. doi: 10.1109/TR.2014.2372432
 | 
																													
																						| 3 | RAMSEY B W, TEMPLE M A, MULLINS B E. PHY foundation for multi-factor ZigBee node authentication[C]//Proc. of the IEEE Global Communications Conference, 2012: 795-800. | 
																													
																						| 4 | KENNEDY I O, SCANLON P, MULLANY F J. Radio transmitter fingerprinting: a steady state frequency domain approach[C]//Proc. of the 68th IEEE Vehicular Technology Conference, 2008. | 
																													
																						| 5 | HUANG N E ,  SHEN Z ,  LONG S R , et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1998, 454 (1971): 903- 995. doi: 10.1098/rspa.1998.0193
 | 
																													
																						| 6 | XU S H, HUANG B X, XU L N, et al. Radio transmitter classification using a new method of stray features analysis combined with PCA[C]//Proc. of the IEEE Military Communications Conference, 2007. | 
																													
																						| 7 | 刘明骞, 颜志文, 张俊林.  空中目标辐射源的个体识别方法[J]. 系统工程与电子技术, 2019, 41 (11): 2408- 2415. | 
																													
																						|  | LIU M Q ,  YAN Z W ,  ZHANG J L .  Specific emitter identification method for aerial target[J]. Systems Engineering and Electronics, 2019, 41 (11): 2408- 2415. | 
																													
																						| 8 | PENG L N, HU A Q, YU J B, et al. A differential constellation trace figure based device identification method for ZigBee nodes[C]//Proc. of the IEEE International Conference on Wireless Communications & Signal Processing, 2016. | 
																													
																						| 9 | 彭林宁, 胡爱群, 朱长明, 等.  基于星座轨迹图的射频指纹提取方法[J]. 信息安全学报, 2016, 1 (1): 50- 58. doi: 10.19363/j.cnki.cn10-1380/tn.2016.01.007
 | 
																													
																						|  | PENG L N ,  HU A Q ,  ZHU C M , et al.  Radio frequency fingerprint extraction method based on constellation trace figure[J]. Journal of Information Security, 2016, 1 (1): 50- 58. doi: 10.19363/j.cnki.cn10-1380/tn.2016.01.007
 | 
																													
																						| 10 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2021-10-02]. https://arxiv.org/abs/1409.1556. | 
																													
																						| 11 | SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2015. | 
																													
																						| 12 | 王炳程. 通信设备指纹识别关键技术研究[D]. 成都: 电子科技大学, 2019. | 
																													
																						|  | WANG B C. Research on key technology of fingerprint identification of communication equipment[D]. Chengdu: University of Electronic Science and Technology of China, 2019. | 
																													
																						| 13 | DING L D ,  WANG S L ,  WANG F G , et al.  Specific emitter identification via convolutional neural networks[J]. IEEE Communications Letters, 2018, 22, 2591- 2594. doi: 10.1109/LCOMM.2018.2871465
 | 
																													
																						| 14 | WONG L J ,  HEADLEY W C ,  MICHAELS A J .  Specific emitter identification using convolutional neural network-based IQ imbalance estimators[J]. IEEE Access, 2019, 7, 33544- 33555. doi: 10.1109/ACCESS.2019.2903444
 | 
																													
																						| 15 | MERCHANT K ,  REVAY S ,  STANTCHEV G , et al.  Deep learning for RF device fingerprinting in cognitive communication networks[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12 (2): 160- 167. | 
																													
																						| 16 | SANKHE K ,  BELGIOVINE M ,  ZHOU F , et al.  No radio left behind: radio fingerprinting through deep learning of physical-layer hardware impairments[J]. IEEE Trans.on Cognitive Communications and Networking, 2019, 6 (1): 165- 178. | 
																													
																						| 17 | QING G W ,  WANG H F ,  ZHANG T P .  Radio frequency fingerprinting identification for Zigbee via lightweight CNN[J]. Physical Communication, 2021, 44 (1): 101250. | 
																													
																						| 18 | ZHOU X Y ,  HU A Q ,  LI G Y , et al.  A robust radio-frequency fingerprint extraction scheme for practical device recognition[J]. IEEE Internet of Things Journal, 2021, 8 (14): 11276- 11289. doi: 10.1109/JIOT.2021.3051402
 | 
																													
																						| 19 | WONG L J, HEADLEY W C, ANDREWS S, et al. Clustering learned CNN features from raw I/Q data for emitter identification[C]//Proc. of the MILCOM IEEE Military Communications Conference, 2018: 26-33. | 
																													
																						| 20 | 吴子龙, 陈红, 雷迎科, 等.  基于堆栈式LSTM网络的通信辐射源个体识别[J]. 系统工程与电子技术, 2020, 42 (12): 2915- 2923. doi: 10.3969/j.issn.1001-506X.2020.12.30
 | 
																													
																						|  | WU Z L ,  CHEN H ,  LEI Y K , et al.  Communication emitter individual identification based on stacked LSTM network[J]. Systems Engineering and Electronics, 2020, 42 (12): 2915- 2923. doi: 10.3969/j.issn.1001-506X.2020.12.30
 | 
																													
																						| 21 | 秦嘉. 基于深度学习的通信辐射源个体识别[D]. 北京: 北京邮电大学, 2019. | 
																													
																						|  | QIN J. Individual identification of communication radiators based on deep learning[D]. Beijing: Beijing University of Posts and Telecommunications, 2019. | 
																													
																						| 22 | LIU Y H ,  XU H ,  QI Z S , et al.  Specific emitter identification against unreliable features interference based on time-series classification network structure[J]. IEEE Access, 2020, 8, 200194- 200208. doi: 10.1109/ACCESS.2020.3035813
 | 
																													
																						| 23 | WANG Y ,  GUI G ,  GACANIN H , et al.  An efficient specific emitter identification method based on complex-valued neural networks and network compression[J]. IEEE Journal on Selected Areas in Communications, 2021, 39 (8): 2305- 2317. doi: 10.1109/JSAC.2021.3087243
 | 
																													
																						| 24 | WANG S H ,  JIANG H L ,  FANG X F , et al.  Radio frequency fingerprint identification based on deep complex residual network[J]. IEEE Access, 2020, 8, 204417- 204424. doi: 10.1109/ACCESS.2020.3037206
 | 
																													
																						| 25 | 牛伟宇, 许华, 刘英辉, 等.  基于PACGAN与差分星座轨迹图的辐射源个体识别[J]. 信号处理, 2021, 37 (8): 1559- 1567. | 
																													
																						|  | NIU W Y ,  XU H ,  LIU Y H , et al.  Individual identification method based on PACGAN and differential constellation trace figure[J]. Signal Processing, 2021, 37 (8): 1559- 1567. | 
																													
																						| 26 | 方章闻, 张金艺, 李科, 等.  小样本条件下的通信辐射源半监督特征提取[J]. 系统工程与电子技术, 2020, 42 (10): 2381- 2389. doi: 10.3969/j.issn.1001-506X.2020.10.29
 | 
																													
																						|  | FANG Z W ,  ZHANG J Y ,  LI K , et al.  Semi-supervised feature extraction of communication emitter under small sample condition[J]. Systems Engineering and Electronics, 2020, 42 (10): 2381- 2389. doi: 10.3969/j.issn.1001-506X.2020.10.29
 | 
																													
																						| 27 | 陈浩, 杨俊安, 刘辉.  基于深度残差适配网络的通信辐射源个体识别[J]. 系统工程与电子技术, 2021, 43 (3): 603- 609. | 
																													
																						|  | CHEN H ,  YANG J A ,  LIU H .  Communication transmitter individual identification based on deep residual adaptation network[J]. Systems Engineering and Electronics, 2021, 43 (3): 603- 609. | 
																													
																						| 28 | PAN Y W ,  YANG S H ,  PENG H .  Specific emitter identification based on deep residual networks[J]. IEEE Access, 2019, 7, 54425- 54434. doi: 10.1109/ACCESS.2019.2913759
 | 
																													
																						| 29 | PENG L N ,  ZHANG J Q ,  LIU M , et al.  Deep learning based RF fingerprint identification using differential constellation trace figure[J]. IEEE Trans.on Vehicular Technology, 2020, 69 (1): 1091- 1095. doi: 10.1109/TVT.2019.2950670
 | 
																													
																						| 30 | SNELL J ,  SWERSKY K ,  ZEMEL R S .  Prototypical networks for few-shot learning[J]. Advances in Neural Information Processing Systems, 2017, 30, 4077- 4087. | 
																													
																						| 31 | STANISLAV F. Gaussian prototypical networks for few-shot learning on omniglot[EB/OL]. [2021-10-02]. https://arxiv.org/abs/1708.02735. | 
																													
																						| 32 | YANG H M, ZHANG X Y, YIN F, et al. Robust classification with convolutional prototype learning[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 3474-3482. | 
																													
																						| 33 | YANG H M ,  ZHANG X Y ,  YIN F , et al.  Convolutional prototype network for open set recognition[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2020, 44 (5): 2385- 2370. | 
																													
																						| 34 | SHU Y ,  SHI Y M ,  WANG Y W , et al.  P-ODN: prototype-based open deep network for open set recognition[J]. Scientific Reports, 2020, 10, 7146. | 
																													
																						| 35 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. | 
																													
																						| 36 | LIU C L ,  NAKAGAWA M .  Evaluation of prototype learning algorithms for nearest-neighbor classifier in application to handwritten character recognition[J]. Pattern Recognition, 2001, 34 (3): 601- 615. | 
																													
																						| 37 | IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proc. of the 32nd International Conference on Machine Learning, 2015: 448-456. |