系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (7): 2236-2248.doi: 10.12305/j.issn.1001-506X.2023.07.35
邓喆, 雷菁, 孙承哲
收稿日期:
2022-07-13
出版日期:
2023-06-30
发布日期:
2023-07-11
通讯作者:
雷菁
作者简介:
邓喆(1998—),男,硕士研究生,主要研究方向为通信信号处理Zhe DENG, Jing LEI, Chengzhe SUN
Received:
2022-07-13
Online:
2023-06-30
Published:
2023-07-11
Contact:
Jing LEI
摘要:
实际跳频信号所处的电磁环境较为复杂且难以预料,这给基于仿真数据训练的检测算法带来困扰。针对这一问题,提出一种名为半监督干扰对消的方法。该方法首先以暹罗嵌套Unet为主干, 引入图注意力机制和集成通道注意力模块, 得到干扰对消网络,并用成对的跳频信号时频图以及对应的标签对其进行预训练,使其获得干扰对消及检测信号的能力。然后,将没有标签、干扰更为复杂的时频图输入到干扰对消网络,得到低熵预测,作为伪标签。同时,对这些没有标签的时频图进行强增强,得到变形时频图。训练网络使得变形时频图的检测结果与伪标签具有一致性,从而强化网络在没有标签的数据上的泛化能力。仿真结果表明,所提方法可以在复杂干扰下实现参数估计和盲检测,并利用无标签数据增强网络性能。
中图分类号:
邓喆, 雷菁, 孙承哲. 跳频信号盲检测的半监督干扰对消方法[J]. 系统工程与电子技术, 2023, 45(7): 2236-2248.
Zhe DENG, Jing LEI, Chengzhe SUN. Semi-supervised interference cancellation method for frequency hopping signal blind detection[J]. Systems Engineering and Electronics, 2023, 45(7): 2236-2248.
1 | LYU J F, QU W. Application of the wavelet rearrangement algorithm in the detection of noncooperative frequency hopping signals[C]//Proc. of the IEEE 11th International Conference on Signal Processing, 2012: 263-266. |
2 | SIROTIYA M, BANERJEE A. Detection and estimation of frequency hopping signals using wavelet transform[C]//Proc. of the 2nd UK-India-IDRC International Workshop on Cognitive Wireless Systems, 2010. |
3 | 赵宏伟, 李勇. 一种基于时频分布的跳频信号检测方法的研究[J]. 信息安全与通信保密, 2006, 4 (6): 98-99, 102 |
ZHAO H W , LI Y . The research of FH signal detection based on time-frequency distribution[J]. China Information Security, 2006, 4 (6): 98-99, 102 | |
4 | 陈利虎, 张尔扬. 一种多分量跳频信号参数盲估计方法[J]. 信号处理, 2009, 25 (2): 194- 198. |
CHEN L H , ZHANG E Y . A new method for blind parameter estimation of multicomponent frequency-hopping signals[J]. Signal Processing, 2009, 25 (2): 194- 198. | |
5 | XU M K, PING X J, LI T Y, et al. A new time-frequency spectrogram analysis of FH signals by image enhancement and mathematical morphology[C]//Proc. of the 4th International Conference on Image and Graphics, 2007: 610-615. |
6 | LUO S G, LUO L Y. Adaptive detection of an unknown FH signal based on image features[C]//Proc. of the 5th International Conference on Wireless Communications, Networking and Mobile Computing, 2009. |
7 | 王曼颖, 龚晓峰, 雒瑞森, 等. 基于自适应形态学的跳频信号参数联合盲估计[J]. 系统工程与电子技术, 2021, 43 (5): 1398- 1405. |
WANG M Y , GONG X F , LUO R S , et al. Joint blind parameter estimation of frequency hopping signal based on adaptive morphology[J]. Systems Engineering and Electronics, 2021, 43 (5): 1398- 1405. | |
8 | 张盛魁, 姚志成, 何岷, 等. 改进时频脊线的跳频参数盲估计算法[J]. 系统工程与电子技术, 2019, 41 (12): 2885- 2890. |
ZHANG S K , YAO Z C , HE M , et al. Blind estimation algorithm for frequency hopping parameters of improved time-frequency ridge[J]. Systems Engineering and Electronics, 2019, 41 (12): 2885- 2890. | |
9 | BOUSIAS ALEXAKIS E , ARMENAKIS C . Evaluation of unet and unet++ architecturs in high resolution image change detection applications[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2020, 43, 1507- 1514. |
10 | CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proc. of the Computer Vision-European Conference on Computer Vision, 2018. |
11 | DAUDT R C, LE S B, BOULCH A. Fully convolutional Siamese networks for change detection[C]//Proc. of the 25th IEEE International Conference on Image Processing, 2018: 4063-4067. |
12 | ZI W J , XIONG W , CHEN H , et al. SGA-Net: self-constructing graph attention neural network for semantic segmentation of remote sensing images[J]. Remote Sensing, 2021, 13 (21): 4201. |
13 | ZHANG C X , YUE P , TAPETE D , et al. A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166, 183- 200. |
14 | TARVAINEN A, VALPOLA H. Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results[C]//Proc. of the 31st Annual Conference on Neural Information Processing Systems, Neural Information Processing Systems Foundation, 2017: 1196-1205. |
15 | SOHN K, BERTHELOT D, CARLINI N, et al. Fixmatch: simplifying semi-supervised learning with consistency and confidence[C]//Proc. of the 34th Conference on Neural Information Processing Systems, Neural Information Processing Systems Foundation, 2020: 596-608. |
16 | PENG D F , BRUZZONE L , ZHANG Y J , et al. SemiCDNet: a semisupervised convolutional neural network for change detection in high resolution remote-sensing images[J]. IEEE Trans.on Geoscience and Remote Sensing, 2020, 59, 5891- 5906. |
17 | FANG S , LI K Y , SHAO J Y , et al. SNUNet-CD: a densely connected Siamese network for change detection of VHR images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1- 5. |
18 | SUN C Z , WU J J , CHEN H , et al. SemiSANet: a semi-supervised high-resolution remote sensing image change detection model using Siamese networks with graph attention[J]. Remote Sensing, 2022, 14 (12): 2801. |
19 | CUBUK E D, ZOPH B, SHLENS J, et al. Practical automated data augmentation with a reduced search space[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020: 702-703. |
20 | HARALICK M R , SHAPIRO L G . Computer and robot vision[M]. Massachusetts: Addison-Wesley Publishing Company, 1992. |
21 | OESTGES C , CLERCKX B . MIMO wireless communications: from real-world propagation to space-time code design[M]. New York: Academic Press, 2010. |
22 | CSURKA G, LARLUS D, PERRONNIN F. What is a good evaluation measure for semantic segmentation[C]//Proc. of the 24th British Machine Vision Conference, 2013. |
23 | 韩文草, 孙闽红, 王之腾, 等. 基于DeepLabV3与GAN的雷达时频混叠多信号智能检测与分离[J]. 信号处理, 2022, 38 (5): 1065- 1074. |
HAN W C , SUN M H , WANG Z T , et al. Intelligent detection and separation of radar time frequency aliasing multi-signal based on DeepLabV3 and GAN[J]. Journal of Signal Processing, 2022, 38 (5): 1065- 1074. | |
24 | 张珊, 吴瑛, 陈秋华. 基于CASH-CFAR的跳频信号检测[J]. 计算机工程与设计, 2010, 31 (21): 4697- 4700. |
ZHANG S , WU Y , CHEN Q H . Frequency hopping signal detection based on CASH-CFAR[J]. Computer Engineering and Design, 2010, 31 (21): 4697- 4700. | |
25 | 齐昶, 王斌, 颜羡卿. 短波环境下跳频信号检测[J]. 雷达科学与技术, 2011, 9 (4): 335- 340. |
QI C , WANG B , YAN X Q . Frequency hopping signal detection in short wave environment[J]. Radar Science and Techno-logy, 2011, 9 (4): 335- 340. | |
26 | IANDOLA F N, MOSKEWICZ M W, ASHRAF K, et al. SqueezeNet: Alex Netlevel accuracy with 50x fewer parameters and < 1MB model size[EB/OL]. [2022-06-13]. https://arxiv.53yu.com/abs/1602.07360. |
[1] | 崔中普, 葛松虎, 李亚星, 郭宇, 邢金岭, 孟进. 基于部分解耦合的非线性数字干扰对消算法[J]. 系统工程与电子技术, 2023, 45(4): 973-981. |
[2] | 赵庆媛, 赵志强, 叶春茂, 鲁耀兵. 基于自注意力的双波段预警雷达微动融合识别[J]. 系统工程与电子技术, 2023, 45(3): 708-716. |
[3] | 曹鹏宇, 杨承志, 陈泽盛, 王露, 石礼盟. 基于深度残差收缩注意力网络的雷达信号识别方法[J]. 系统工程与电子技术, 2023, 45(3): 717-725. |
[4] | 闫啸家, 梁伟阁, 张钢, 佘博, 田福庆. 基于RCNN-ABiLSTM的机械设备剩余寿命预测方法[J]. 系统工程与电子技术, 2023, 45(3): 931-940. |
[5] | 崔中普, 葛松虎, 李亚星, 郭宇, 谢明亮, 孟进. 基于二维正交化WLCLMS的自干扰对消方法[J]. 系统工程与电子技术, 2022, 44(9): 2726-2735. |
[6] | 韩啸, 陈世文, 陈蒙, 杨锦程. 基于互易点学习的LPI信号开集识别[J]. 系统工程与电子技术, 2022, 44(9): 2752-2759. |
[7] | 马骏, 杨镜宇, 吴曦. 基于预聚类主动半监督的作战体系效能评估[J]. 系统工程与电子技术, 2022, 44(6): 1889-1896. |
[8] | 徐平亮, 崔亚奇, 熊伟, 熊振宇, 顾祥岐. 生成式中断航迹接续关联方法[J]. 系统工程与电子技术, 2022, 44(5): 1543-1552. |
[9] | 吴涛, 王伦文, 朱敬成. 基于迁移学习和注意力机制的伪装图像分割[J]. 系统工程与电子技术, 2022, 44(2): 376-384. |
[10] | 金涛, 王晓峰, 田润澜, 张歆东. 基于改进1DCNN+TCN的雷达辐射源快速识别方法[J]. 系统工程与电子技术, 2022, 44(2): 463-469. |
[11] | 马钰棠, 孙鹏, 张杰勇, 王鹏, 闫云飞, 赵亮. 样本不平衡下的空中群组意图识别方法[J]. 系统工程与电子技术, 2022, 44(12): 3747-3755. |
[12] | 唐一强, 杨霄鹏, 朱圣铭. 基于注意力机制的混合CNN-BiLSTM低轨卫星信道预测算法[J]. 系统工程与电子技术, 2022, 44(12): 3863-3870. |
[13] | 曲凌志, 杨俊安, 刘辉, 黄科举. 嵌入注意力机制的通信辐射源个体识别方法[J]. 系统工程与电子技术, 2022, 44(1): 20-27. |
[14] | 刘紫燕, 马珊珊, 梁静, 朱明成, 袁磊. 注意力机制CNN的毫米波大规模MIMO系统信道估计算法[J]. 系统工程与电子技术, 2022, 44(1): 307-312. |
[15] | 崔邦彦, 田润澜, 王东风, 崔钢, 石静苑. 基于注意力机制和改进CLDNN的雷达辐射源识别[J]. 系统工程与电子技术, 2021, 43(5): 1224-1231. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||