系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (7): 2236-2248.doi: 10.12305/j.issn.1001-506X.2023.07.35

• 通信与网络 • 上一篇    下一篇

跳频信号盲检测的半监督干扰对消方法

邓喆, 雷菁, 孙承哲   

  1. 国防科技大学电子科学学院, 湖南 长沙 410073
  • 收稿日期:2022-07-13 出版日期:2023-06-30 发布日期:2023-07-11
  • 通讯作者: 雷菁
  • 作者简介:邓喆(1998—),男,硕士研究生,主要研究方向为通信信号处理
    雷菁(1968—),女,教授,博士,主要研究方向为信息论、低密度奇偶校验码、空时编码、先进的多址技术、物理层安全、无线通信技术
    孙承哲(1997—),男,硕士研究生,主要研究方向为图像处理

Semi-supervised interference cancellation method for frequency hopping signal blind detection

Zhe DENG, Jing LEI, Chengzhe SUN   

  1. College of Electronic Science, National University of Defense Technology, Changsha 410073, China
  • Received:2022-07-13 Online:2023-06-30 Published:2023-07-11
  • Contact: Jing LEI

摘要:

实际跳频信号所处的电磁环境较为复杂且难以预料,这给基于仿真数据训练的检测算法带来困扰。针对这一问题,提出一种名为半监督干扰对消的方法。该方法首先以暹罗嵌套Unet为主干, 引入图注意力机制和集成通道注意力模块, 得到干扰对消网络,并用成对的跳频信号时频图以及对应的标签对其进行预训练,使其获得干扰对消及检测信号的能力。然后,将没有标签、干扰更为复杂的时频图输入到干扰对消网络,得到低熵预测,作为伪标签。同时,对这些没有标签的时频图进行强增强,得到变形时频图。训练网络使得变形时频图的检测结果与伪标签具有一致性,从而强化网络在没有标签的数据上的泛化能力。仿真结果表明,所提方法可以在复杂干扰下实现参数估计和盲检测,并利用无标签数据增强网络性能。

关键词: 跳频检测, 干扰对消, 注意力机制, 半监督学习

Abstract:

The real electromagnetic environment for real hopping frequency is complex and unpredictable, which poses a problem to the detection algorithm based on simulation data training. To address this problem, a method called semi-supervised interference cancellation is proposed. The method firstly introduces a graph attention mechanism and an ensemble channel attention module with Siamese nested Unet backbone to obtain an interference cancellation network, and pretrains it with paired spectrograms of hopping signals and corresponding labels to obtain the ability of interference cancellation and signal detection. Secondly, input the unlabeled spectrograms with more complex interference to the interference cancellation network to obtain low-entropy predictions as pseudo labels. Meanwhile, the unlabeled spectrograms are also strongly enhanced to obtain the distorted spectrograms. The network is trained so that the detection results of the distorted spectrograms are consistent with the pseudo-label, thus strengthening the generalization ability of the network on the unlabeled data. The simulation results show that the proposed method can achieve parameter estimation and blind detection under complex interference and enhance the network performance with unlabeled data.

Key words: frequency hopping detection, interference cancelation, attention mechanism, semi-supervised learning

中图分类号: