24 |
CENCINI M , LACORATA G , VULPIANI A , et al. Mixing in a meandering jet: a markovian approximation[J]. Journal of Physical Oceanography, 1999, 29 (10): 2578- 2594.
doi: 10.1175/1520-0485(1999)029<2578:MIAMJA>2.0.CO;2
|
25 |
KALA R , WARWICK K . Multi-vehicle planning using RRT-connect[J]. Paladyn, Journal of Behavioral Robotics, 2011, 2 (3): 134- 144.
|
26 |
BOUTER A , ALDERLIESTEN T , BOSMAN P A N . Achieving highly scalable evolutionary real-valued optimization by exploiting partial evaluations[J]. Evolutionary Computation, 2021, 29 (1): 129- 155.
|
27 |
BOUTER A, ALDERLIESTEN T, WITTEVEEN C, et al. Exploiting linkage information in real-valued optimization with the real-valued gene-pool optimal mixing evolutionary algorithm[C]//Proc. of the Genetic and Evolutionary Computation Conference, 2017: 705-712.
|
28 |
OLIEMAN C , BOUTER A , BOSMAN P A N . Fitness-based linkage learning in the real-valued gene-pool optimal mixing evolutionary algorithm[J]. IEEE Trans.on Evolutionary Computation, 2021, 25 (2): 358- 370.
|
29 |
WANG Y P , LIU H Y , WEI F , et al. Cooperative coevolution with formula-based variable grouping for large-scale global optimization[J]. Evolutionary Computation, 2018, 26 (4): 569- 596.
|
30 |
LIU Y H , CAO B Y , LI H H . Improving ant colony optimization algorithm with epsilon greedy and levy flight[J]. Complex & Intelligent Systems, 2021, 7 (4): 1711- 1722.
|
31 |
LI G Q, DONG W C, WANG Y J, et al. Path planning of underwater vehicles based on improved whale optimization algorithm[C]//Proc. of the International Conference on Automation, Control and Robotics Engineering, 2021: 444-448.
|
32 |
WANG M , LUO J , WALTER U . Trajectory planning of free-floating space robot using particle swarm optimization (PSO)[J]. Acta Astronautica, 2015, 112, 77- 88.
|
33 |
ZAMUDA A , HERNÁNDEZ SOSA J D . Differential evolution and underwater glider path planning applied to the short-term opportun-nistic sampling of dynamic mesoscale ocean structures[J]. Applied Soft Computing, 2014, 24, 95- 108.
|
34 |
GEBCO Compilation Group. The GEBCO_2020 grid[EB/OL]. [2022-04-17]. https://www.gebco.net/data_and_products/gridded_bathymetry_data/gebco_2020.
|
1 |
ATAEI M , YOUSEFI-KOMA A . Three-dimensional optimal path planning for waypoint guidance of an autonomous underwater vehicle[J]. Robotics and Autonomous Systems, 2015, 67, 23- 32.
doi: 10.1016/j.robot.2014.10.007
|
2 |
ZENG Z , LIAN L , SAMMUT K , et al. A survey on path planning for persistent autonomy of autonomous underwater vehicles[J]. Ocean Engineering, 2015, 110, 303- 313.
doi: 10.1016/j.oceaneng.2015.10.007
|
3 |
LI Y , MA T , CHEN P Y , et al. Autonomous underwater vehicle optimal path planning method for seabed terrain matching navigation[J]. Ocean Engineering, 2017, 133, 107- 115.
doi: 10.1016/j.oceaneng.2017.01.026
|
4 |
LIU X A , MA D L , YANG M Q , et al. Modified block A* path-planning method for hybrid-driven underwater gliders[J]. IEEE Journal of Oceanic Engineering, 2021, 47 (1): 20- 31.
|
5 |
GE H Q , CHEN G B , XU G . Multi-AUV cooperative target hunting based on improved potential field in a surface-water environment[J]. Applied Sciences, 2018, 8 (6): 973.
doi: 10.3390/app8060973
|
6 |
冯豪博, 胡桥, 赵振轶. 基于精英族系遗传算法的AUV集群路径规划[J]. 系统工程与电子技术, 2022, 44 (7): 2251- 2262.
|
|
FENG H B , HU Q , ZHAO Z Y . AUV swarm path planning based on elite family genetic algorithm[J]. Systems Engineering and Electronics, 2022, 44 (7): 2251- 2262.
|
7 |
张岳星, 王轶群, 李硕, 等. 基于海图和改进粒子群优化算法的AUV全局路径规划[J]. 机器人, 2020, 42 (1): 120- 128.
|
|
ZHANG Y X , WANG Y Q , LI S , et al. Global path planning for AUV based on charts and the improved particle swarm optimization algorithm[J]. Robot, 2020, 42 (1): 120- 128.
|
8 |
TAHERI E , FERDOWSI M H , DANESH M . Closed-loop randomized kinodynamic path planning for an autonomous underwater vehicle[J]. Applied Ocean Research, 2019, 83, 48- 64.
doi: 10.1016/j.apor.2018.12.008
|
9 |
CHEN M Z , ZHU D Q . Optimal time-consuming path planning for autonomous underwater vehicles based on a dynamic neural network model in ocean current environments[J]. IEEE Trans.on Vehicular Technology, 2020, 69 (12): 14401- 14412.
doi: 10.1109/TVT.2020.3034628
|
10 |
ALBARAKATI S , LIMA R M , GIRALDI L , et al. Optimal 3D trajectory planning for AUVs using ocean general circulation models[J]. Ocean Engineering, 2019, 188, 106266.
doi: 10.1016/j.oceaneng.2019.106266
|
11 |
ALBARAKATI S , LIMA R M , THEUSSL T , et al. Optimal 3D time-energy trajectory planning for auvs using ocean general circulation models[J]. Ocean Engineering, 2020, 218, 108057.
doi: 10.1016/j.oceaneng.2020.108057
|
12 |
MA Y N , GONG Y J , XIAO C F , et al. Path planning for autonomous underwater vehicles: an ant colony algorithm incorporating alarm pheromone[J]. IEEE Trans.on Vehicular Technology, 2019, 68 (1): 141- 154.
doi: 10.1109/TVT.2018.2882130
|
13 |
ZENG Z , LAMMAS A , SAMMUT K , et al. Shell space decomposition based path planning for AUVs operating in a variable environment[J]. Ocean Engineering, 2014, 91, 181- 195.
doi: 10.1016/j.oceaneng.2014.09.001
|
14 |
MIRJALILI S , LEWIS A . The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95, 51- 67.
doi: 10.1016/j.advengsoft.2016.01.008
|
15 |
BUI D T , ABDULLAHI M M , GHAREH S , et al. Fine-tuning of neural computing using whale optimization algorithm for predicting compressive strength of concrete[J]. Engineering with Computers, 2021, 37 (1): 701- 712.
doi: 10.1007/s00366-019-00850-w
|
16 |
PETROVIC M , MILJKOVIC Z , JOKIC A . A novel methodo-logy for optimal single mobile robot scheduling using whale optimization algorithm[J]. Applied Soft Computing, 2019, 81, 105520.
doi: 10.1016/j.asoc.2019.105520
|
17 |
SAAFAN M M , EL-GENDY E M . IWOSSA: an improved whale optimization salp swarm algorithm for solving optimization problems[J]. Expert Systems with Applications, 2021, 176, 114901.
doi: 10.1016/j.eswa.2021.114901
|
18 |
ZHANG X M , WEN S C . Hybrid whale optimization algorithm with gathering strategies for high-dimensional problems[J]. Expert Systems with Applications, 2021, 179, 115032.
doi: 10.1016/j.eswa.2021.115032
|
19 |
褚鼎立, 陈红, 王旭光. 基于自适应权重和模拟退火的鲸鱼优化算法[J]. 电子学报, 2019, 47 (5): 992- 999.
|
|
CHU D L , CHEN H , WANG X G . Whale optimization algorithm based on adaptive weight and simulated annealing[J]. Acta Electronica Sinica, 2019, 47 (5): 992- 999.
|
20 |
HEIDARI A A , ALJARAH I , FARIS H , et al. An enhanced associative learning-based exploratory whale optimizer for glo-bal optimization[J]. Neural Computing & Applications, 2020, 32 (9): 5185- 5211.
|
21 |
ABD ELAZIZ M , LU S F , HE S B . A multi-leader whale optimization algorithm for global optimization and image segmentation[J]. Expert Systems with Applications, 2021, 175, 114841.
doi: 10.1016/j.eswa.2021.114841
|
22 |
SUN Y J , CHEN Y . Multi-population improved whale optimization algorithm for high dimensional optimization[J]. Applied Soft Computing, 2021, 112, 107854.
doi: 10.1016/j.asoc.2021.107854
|
23 |
HADSELL R, BAGNELL J A, HUBER D, et al. Accurate rough terrain estimation with space-carving kernels[C]//Proc. of the Robotics: Science and Systems, 2009.
|