系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (7): 2170-2182.doi: 10.12305/j.issn.1001-506X.2023.07.28

• 制导、导航与控制 • 上一篇    下一篇

基于改进鲸鱼优化算法的AUV三维路径规划

李广强, 董文超, 朱大庆, 于越, 陈浩, 于双和   

  1. 大连海事大学船舶电气工程学院, 辽宁 大连 116026
  • 收稿日期:2022-05-09 出版日期:2023-06-30 发布日期:2023-07-11
  • 通讯作者: 李广强
  • 作者简介:李广强(1973—), 男, 副教授, 博士, 主要研究方向为智能控制与优化、智能机器人技术
    董文超(1997—), 男, 硕士研究生, 主要研究方向为智能控制与优化、智能机器人技术
    朱大庆(1998—), 男, 硕士研究生, 主要研究方向为智能控制与优化
    于越(1999—), 男, 硕士研究生, 主要研究方向为智能控制与优化
    陈浩(1998—), 男, 硕士研究生, 主要研究方向为智能控制与优化
    于双和(1968—), 男, 教授, 博士, 主要研究方向为复杂系统建模与控制
  • 基金资助:
    国家自然科学基金(62073054);辽宁省研究生教育教学改革研究项目(辽教通[2022]249号-209)

3D path planning for AUV based on improved whaleoptimization algorithm

Guangqiang LI, Wenchao DONG, Daqing ZHU, Yue YU, Hao CHEN, Shuanghe YU   

  1. School of Marine Electrical Engineering, Dalian Maritime University, Dalian 116026, China
  • Received:2022-05-09 Online:2023-06-30 Published:2023-07-11
  • Contact: Guangqiang LI

摘要:

自主水下机器人(autonomous underwater vehicle, AUV)已成为不同领域多种水下作业最有效的装备之一。针对其全局路径规划问题,提出了一种基于改进鲸鱼优化算法的求解方法。首先对于建模问题, 在环境模型中, 鉴于三维空间中设置路径点的复杂性, 给出了基于连接型快速扩展随机树(connected rapidly-exploring random tree, RRT-Connect)的建模方法; 在数学优化模型中, 综合了路径平滑度、下潜梯度和航行时间等3项评价准则, 并考虑了强海流及障碍物带来的相关约束。然后针对上述模型, 提出了一种改进的鲸鱼优化算法。引入了基于问题连接结构的优化思想, 据此在线构建了关键子集族和有效子集族, 用于实时发现关键度和有效度较高的连接集, 并增大其重复利用率, 以提高算法的收敛速度和精度。此外, 为更全面有效地利用历史进化信息, 设计了多学习集构造个体引领者及联合引导策略, 以进一步增强算法的整体性能。最后根据实际海底地形信息和不同海流模型, 设置了多种路径规划情形进行仿真实验。结果表明, 相对于文献中其他鲸鱼优化算法和经典算法, 所提算法在求解精度、收敛速度和稳定性等方面均表现更为出色, 可较好地满足AUV航行的路径规划需求。

关键词: 路径规划, 鲸鱼优化算法, 自主水下机器人, 环境建模

Abstract:

Autonomous underwater vehicle (AUV) have become one kind of the most effective equipment for multiple underwater operations in different fields. A solution method for AUV global path planning is proposed based on improved whale optimization algorithm. Firstly, for the modelling of the problem, in the process of environment modelling, in view of the complexity of waypoint setting in 3D space, a modelling method based on the connected rapidly-exploring random tree (RRT-Connect) is presented; in the mathematical optimization model, three evaluation criteria including the path smoothness, the diving gradient and the navigation time are integrated, and the relevant constraints caused by strong currents and obstacles are considered. Then for the above models, an improved whale optimization algorithm is proposed. The optimization idea based on the linkage structure of the problem is introduced. And families of key subsets and effective subsets are constructed online according to it, which are adopted to discover the linkage sets with high criticality and effectiveness in real time, and increase the probability of their reuse rate, so as to improve the convergence speed and accuracy of proposed algorithm. In addition, to take advantage of historical evolution information more comprehensively and effectively, the method of constructing individual leaders with multiple learning sets and the corresponding joint guidance strategies are designed to further enhance the overall performance of the algorithm. Finally, according to the practical seabed terrain information and different ocean current models, several path planning scenarios are set up for simulation experiments. The results show that compared with other whale optimization algorithms and classical intelligent algorithms presented in references, the proposed algorithm is more superior in terms of solving accuracy, stability and convergence speed, which better meet the requirements of AUV path planning.

Key words: path planning, whale optimization algorithm (WOA), autonomous underwater vehicle (AUV), environment modeling

中图分类号: