1 |
ESMAELZADEH R , RAHMANI F Z . Review of re-entry gui-dance methods based on trajectory generation[J]. Journal of Technology in Aerospace Engineering, 2022, 5 (4): 61- 72.
|
2 |
HU Y D , GAO C S , LI J L , et al. A novel adaptive lateral reentry guidance algorithm with complex distributed no-fly zones constraints[J]. Chinese Journal of Aeronautics, 2022, 35 (7): 128- 143.
doi: 10.1016/j.cja.2021.06.016
|
3 |
WU Y , YAO J Y , QU X J . An adaptive reentry guidance method considering the influence of blackout zone[J]. Acta Astronautica, 2018, 142, 253- 264.
doi: 10.1016/j.actaastro.2017.10.041
|
4 |
ZANG L Y , LIN D F , CHEN S Y , et al. An on-line guidance algorithm for high L/D hypersonic reentry vehicles[J]. Aerospace Science and Technology, 2019, 89, 150- 162.
doi: 10.1016/j.ast.2019.03.052
|
5 |
PAN L , PENG S C , XIE Y , et al. 3D guidance for hypersonic reentry gliders based on analytical prediction[J]. Acta Astronautica, 2020, 167, 42- 51.
doi: 10.1016/j.actaastro.2019.07.039
|
6 |
CHENG L , WANG Z B , CHENG Y , et al. Multi-constrained predictor-corrector reentry guidance for hypersonic vehicles[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232 (16): 3049- 3067.
doi: 10.1177/0954410017724185
|
7 |
余跃, 王宏伦. 基于深度学习的高超声速飞行器再人预测校正容错制导[J]. 兵工学报, 2020, 41 (4): 656- 669.
|
|
YU Y , WANG H L . Deep learning-based reentry predictor-corrector fault-tolerant guidance for hypersonic vehicles[J]. Acta Armamentarii, 2020, 41 (4): 656- 669.
|
8 |
潘亮, 谢愈, 彭双春, 等. 高超声速飞行器滑翔制导方法综述[J]. 国防科技大学学报, 2017, 39 (3): 15- 22.
|
|
PAN L , XIE Y , PENG S C , et al. A survey of gliding guidance methods for hyperonic vehicles[J]. Journal of National University of Defense Technology, 2017, 39 (3): 15- 22.
|
9 |
章吉力, 刘凯, 樊雅卓, 等. 考虑禁飞区规避的空天飞行器分段预测校正再入制导方法[J]. 宇航学报, 2021, 42 (1): 122- 131.
|
|
ZHANG J L , LIU K , FAN Y Z , et al. A piecewise predictor-corrector reentry guidance algorithm with no-fly zone avoidance[J]. Journal of Astronautics, 2021, 42 (1): 122- 131.
|
10 |
高杨, 蔡光斌, 徐慧, 等. 虚拟多触角探测的高超声速滑翔飞行器再入机动制导[J]. 航空学报, 2020, 41 (11): 131- 146.
|
|
GAO Y , CAI G B , XU H , et al. Reentry maneuver guidance of hypersonic glide vehicle under virtual multi-tentacle detection[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41 (11): 131- 146.
|
11 |
唐胜景, 王肖, 郭杰. 基于hp伪谱凸优化的高超声速滑翔飞行器轨迹优化与制导[J]. 战术导弹技术, 2020, 203 (5): 66- 75.
|
|
TANG S J , WANG X , GUO J . Trajectory optimization and gui-dance for hypersonic gliding vehicles based on hp pseudospectral convex programming[J]. Tactical Missile Technology, 2020, 203 (5): 66- 75.
|
12 |
高杨, 蔡光斌, 张胜修, 等. 多禁飞区高超声速滑翔飞行器再入机动制导[J]. 兵器装备工程学报, 2019, 40 (8): 32- 39.
|
|
GAO Y , CAI G B , ZHANG S X , et al. Reentry maneuver guidance for hypersonic glide vehicles under multiple no-fly zones[J]. Journal of Ordnance Equipment Engineering, 2019, 40 (8): 32- 39.
|
13 |
宋瑞, 朱勇, 徐广通, 等. 基于序列凸优化的高超声速飞行器协同再入轨迹规划[J]. 战术导弹技术, 2020, 204 (6): 7- 16.
|
|
SONG R , ZHU Y , XU G T , et al. Cooperative reentry trajectory planning of hypersonic vehicle based on sequential convex programming[J]. Tactical Missile Technology, 2020, 204 (6): 7- 16.
|
14 |
LIANG Z X , LIU S Y , LI Q D , et al. Lateral entry guidance with no-fly zone constraint[J]. Aerospace Science and Technology, 2017, 60, 39- 47.
|
15 |
章吉力, 周大鹏, 杨大鹏, 等. 禁飞区影响下的空天飞机可达区域计算方法[J]. 航空学报, 2021, 42 (8): 272- 285.
|
|
ZHANG J L , ZHOU D P , YANG D P , et al. Computation method for reachable domain of aerospace plane under the influence of no-fly zone[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42 (8): 272- 285.
|
16 |
FU S N , LU T Y , YIN J , et al. Rapid algorithm for generating entry landing footprints satisfying the no-fly zone constraint[J]. International Journal of Aerospace Engineering, 2021, 2021, 8827377.
|
17 |
KHATIB O . Real-time obstacle avoidance system for manipulators and mobile robots[J]. The International Journal of Robo-tics Research, 1986, 5 (1): 90- 98.
|
18 |
刘冰雁, 叶雄兵, 方胜良, 等. 基于Frenet和改进人工势场的在轨规避路径自主规划[J]. 北京航空航天大学学报, 2021, 47 (4): 731- 741.
|
|
LIU B Y , YE X B , FANG S L , et al. Autonomous planning of on-orbit evasion path based on Frenet and improved artificial potential field[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47 (4): 731- 741.
|
19 |
LAZAROWSKA A . A discrete artificial potential field for ship trajectory planning[J]. Journal of Navigation, 2020, 73 (1): 233- 251.
|
20 |
韩尧, 李少华. 基于改进人工势场法的无人机航迹规划[J]. 系统工程与电子技术, 2021, 43 (11): 3305- 3311.
|
|
HAN Y , LI S H . UAV path planning based on improved artificial potential field[J]. Systems Engineering and Electronics, 2021, 43 (11): 3305- 3311.
|
21 |
DU Z H , ZHAO D , SHI J P , et al. Formation flight in complex environments using an artificial potential field[J]. Journal of Aerospace Information Systems, 2021, 18 (7): 464- 475.
|
22 |
BATISTA J , SOUZA D , SILVA J , et al. Trajectory planning using artificial potential fields with metaheuristics[J]. IEEE Latin America Transactions, 2020, 18 (5): 914- 922.
|
23 |
PANG B Z , DAI W , HU X T , et al. Multiple air route crossing waypoints optimization via artificial potential field method[J]. Chinese Journal of Aeronautics, 2021, 34 (4): 279- 292.
|
24 |
ZHU D J , YANG S X . Path planning method for unmanned underwater vehicles eliminating effect of currents based on artificial potential field[J]. Journal of Navigation, 2021, 74 (5): 955- 967.
|
25 |
王子瑶, 唐胜景, 郭杰, 等. 多路径约束下的高超声速滑翔飞行器再入制导[J]. 导弹与航天运载技术, 2020, 6 (3): 61- 67.
|
|
WANG Z Y , TANG S J , GUO J , et al. Reentry guidance for hypersonic glide vehicle with multiple path constraints[J]. Missiles and Space Vehicles, 2020, 6 (3): 61- 67.
|
26 |
LI Z H , YANG X J , SUN X D , et al. Improved artificial potential field based lateral entry guidance for waypoints passage and no-fly zones avoidance[J]. Aerospace Science and Techno-logy, 2019, 86, 119- 131.
|
27 |
HU Y D , GAO C S , LI J L , et al. A novel adaptive lateral reentry guidance algorithm with complex distributed no-fly zones constraints[J]. Chinese Journal of Aeronautics, 2021, 35 (7): 128- 143.
|
28 |
ZHANG D , LIU L , WANG Y J . On-line reentry guidance algorithm with both path and no-fly zone constraints[J]. Acta Astronautica, 2015, 117, 243- 253.
|
29 |
PHILLIPS T H. A common aero vehicle (CAV) model, description, and employment guide[R]. Arlington, VA: Schafer Corporation for AFRL and AFSPC, 2003.
|
30 |
DIVYA , MICHAEL , WILLIAM , et al. A unified framework for the numerical solution of optimal control problems using pseudos-pectral methods[J]. Automatica, 2010, 46 (11): 1843- 1851.
|