系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (7): 2138-2149.doi: 10.12305/j.issn.1001-506X.2023.07.25
游骏1, 张科1, 韩治国1,*, 蔡天星2, 张程3
收稿日期:
2022-06-08
出版日期:
2023-06-30
发布日期:
2023-07-11
通讯作者:
韩治国
作者简介:
游骏(1998—),男,硕士研究生,主要研究方向为导航制导与控制Jun YOU1, Ke ZHANG1, Zhiguo HAN1,*, Tianxing CAI2, Cheng ZHANG3
Received:
2022-06-08
Online:
2023-06-30
Published:
2023-07-11
Contact:
Zhiguo HAN
摘要:
针对三维情况下带视线角约束的多弹协同制导问题,基于二阶一致性理论和自适应超螺旋滑模控制方法提出了一种新的三维多弹协同制导律。在视线切向方向,设计了一种协同方法,并利用二阶一致性理论,证明了导弹的相对距离和相对速度能在有限时间内趋于一致。在视线高低角和方位角方向,设计了一个新的滑模面,并利用自适应超螺旋滑模控制方法,证明了在该制导律下导弹能够在有限时间内实现期望视线角且视线角速率收敛到0。所采用的自适应超螺旋滑模控制方法能有效解决传统的滑模抖振问题,且对机动目标有一定的鲁棒性。最后,在仿真实验中,通过对比分析验证了所提出的制导律具有更高的制导精度。
中图分类号:
游骏, 张科, 韩治国, 蔡天星, 张程. 带视线角约束的三维超螺旋滑模协同制导律[J]. 系统工程与电子技术, 2023, 45(7): 2138-2149.
Jun YOU, Ke ZHANG, Zhiguo HAN, Tianxing CAI, Cheng ZHANG. Three-dimensional super-twisting slide mode cooperative guidance law with line-of-sight angle constraint[J]. Systems Engineering and Electronics, 2023, 45(7): 2138-2149.
表2
对非机动目标制导结果(仿真场景2)"
编号 | 脱靶量/m | 制导时间/s | 高低角误差/(°) | 方位角误差/(°) |
导弹1(本文) | 0.086 9 | 46.423 0 | 0.061 9 | 0.009 9 |
导弹2(本文) | 0.533 8 | 46.422 0 | 0.026 9 | 0.014 9 |
导弹3(本文) | 0.558 3 | 46.422 0 | 0.021 7 | 0.010 7 |
导弹4(本文) | 0.246 2 | 46.422 0 | 0.042 2 | 0.013 6 |
导弹1([ | 0.020 0 | 48.303 0 | 0.163 5 | 0.032 2 |
导弹2([ | 0.409 5 | 48.302 0 | 0.035 5 | 0.055 7 |
导弹3([ | 0.574 2 | 48.302 0 | 0.034 8 | 0.036 3 |
导弹4([ | 0.554 8 | 48.302 0 | 0.032 7 | 0.049 0 |
表3
机动情况下制导结果"
编号 | 脱靶量/m | 制导时间/s | 高低角误差/(°) | 方位角误差/(°) |
导弹1(本文) | 0.050 7 | 41.392 0 | 0.216 9 | 0.108 2 |
导弹2(本文) | 0.287 2 | 41.402 0 | 0.184 2 | 0.168 1 |
导弹3(本文) | 0.420 9 | 41.388 0 | 0.264 4 | 0.197 3 |
导弹4(本文) | 0.359 9 | 41.383 0 | 0.171 5 | 0.095 2 |
导弹1([ | 0.239 3 | 41.701 0 | 0.411 7 | 0.003 2 |
导弹2([ | 0.398 2 | 41.716 0 | 0.431 9 | 0.573 3 |
导弹3([ | 0.457 8 | 41.696 0 | 0.301 7 | 0.347 5 |
导弹4([ | 0.019 7 | 41.691 0 | 1.027 7 | 0.036 0 |
1 | 宋俊红, 宋申民, 徐胜利. 一种拦截机动目标的多导弹协同制导律[J]. 宇航学报, 2016, 37 (12): 1306- 1314. |
SONG J H , SONG S M , XU S L . A cooperative guidance law for multiple missiles to intercept maneuvering target[J]. Journal of Astronautics, 2016, 37 (12): 1306- 1314. | |
2 |
HE S M , LIN D F . Three-dimensional optimal impact time gui-dance for antiship missiles[J]. Journal of Guidance, Control, and Dynamics, 2019, 42 (4): 941- 948.
doi: 10.2514/1.G003971 |
3 |
HOU Z W , YANG Y , LIU L , et al. Terminal sliding mode control based impact time and angle constrained guidance[J]. Aerospace Science and Technology, 2019, 93, 105142.
doi: 10.1016/j.ast.2019.04.050 |
4 |
CHEN X T , WANG J Z . Nonsingular sliding-mode control for field-of-view constrained impact time guidance[J]. Journal of Guidance, Control, and Dynamics, 2018, 41 (5): 1214- 1222.
doi: 10.2514/1.G003146 |
5 | KIM H G , CHO D , KIM H J . Sliding mode guidance law for impact time control without explicit time-to-go estimation[J]. IEEE Trans. on Aerospace and Electronic Systems, 2018, 55 (1): 236- 250. |
6 |
TSALIK R , SHIMA T . Circular impact-time guidance[J]. Journal of Guidance, Control, and Dynamics, 2019, 42 (8): 1836- 1847.
doi: 10.2514/1.G004074 |
7 |
TANG Y , ZHU X P , ZHOU Z , et al. Two-phase guidance law for impact time control under physical constraints[J]. Chinese Journal of Aeronautics, 2020, 33 (11): 2946- 2958.
doi: 10.1016/j.cja.2020.06.007 |
8 |
HU Q L , HAN T , XIN M . Sliding-mode impact time guidance law design for various target motions[J]. Journal of Guidance, Control, and Dynamics, 2019, 42 (1): 136- 148.
doi: 10.2514/1.G003620 |
9 |
ERER K S , TEKIN R . Impact time and angle control based on constrained optimal solutions[J]. Journal of Guidance, Control, and Dynamics, 2016, 39 (10): 2448- 2454.
doi: 10.2514/1.G000414 |
10 |
TEKIN R , ERER K S , HOLZAPFEI F . Adaptive impact time control via look-angle shaping under varying velocity[J]. Journal of Guidance, Control, and Dynamics, 2017, 40 (12): 3247- 3255.
doi: 10.2514/1.G002981 |
11 | KIM H G , LEE J Y , KIM H J , et al. Look-angle-shaping guidance law for impact angle and time control with field-of-view constraint[J]. IEEE Trans. on Aerospace and Electronic Systems, 2019, 56 (2): 1602- 1612. |
12 |
赵世钰, 周锐. 基于协调变量的多导弹协同制导[J]. 航空学报, 2008, 29 (6): 1605- 1611.
doi: 10.3321/j.issn:1000-6893.2008.06.031 |
ZHAO S Y , ZHOU R . Multi-missile cooperative guidance using coordination variables[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29 (6): 1605- 1611.
doi: 10.3321/j.issn:1000-6893.2008.06.031 |
|
13 |
ZADKA B , TRIPATHY T , TSALIK R , et al. Consensus-based cooperative geometrical rules for simultaneous target interception[J]. Journal of Guidance, Control, and Dynamics, 2020, 43 (12): 2425- 2432.
doi: 10.2514/1.G005065 |
14 |
刘翔, 梁晓庚. 攻击角约束多拦截弹协同制导控制一体化研究[J]. 西北工业大学学报, 2019, 37 (2): 273- 282.
doi: 10.3969/j.issn.1000-2758.2019.02.009 |
LIU X , LIANG X G . Integrated guidance and control of multiple interceptors with impact angle constraints considered[J]. Journal of Northwestern Polytechnical University, 2019, 37 (2): 273- 282.
doi: 10.3969/j.issn.1000-2758.2019.02.009 |
|
15 |
ZHAO J B , YANG S X . Integrated cooperative guidance framework and cooperative guidance law for multi-missile[J]. Chinese Journal of Aeronautics, 2018, 31 (3): 546- 555.
doi: 10.1016/j.cja.2017.12.013 |
16 |
YU H , DAI K R , LI H J , et al. Distributed cooperative guidance law for multiple missiles with input delay and topology switching[J]. Journal of the Franklin Institute, 2021, 358 (17): 9061- 9085.
doi: 10.1016/j.jfranklin.2021.09.018 |
17 |
LI G F , WU Y J , XU P Y . Fixed-time cooperative guidance law with input delay for simultaneous arrival[J]. International Journal of Control, 2021, 94 (6): 1664- 1673.
doi: 10.1080/00207179.2019.1662947 |
18 |
LYU T , GUO Y N , LI C J , et al. Multiple missiles cooperative guidance with simultaneous attack requirement under directed topologies[J]. Aerospace Science and Technology, 2019, 89, 100- 110.
doi: 10.1016/j.ast.2019.03.037 |
19 | KUMAR S R , MULJERJEE D . Cooperative salvo guidance using finite-time consensus over directed cycles[J]. IEEE Trans. on Aerospace and Electronic Systems, 2019, 56 (2): 1504- 1514. |
20 |
WANG X X , LU H Q , HUANG X L , et al. Three-dimensional time-varying sliding mode guidance law against maneuvering targets with terminal angle constraint[J]. Chinese Journal of Aeronautics, 2022, 35 (4): 303- 319.
doi: 10.1016/j.cja.2021.05.019 |
21 |
LI W , WEN Q Q , HE L , et al. Three-dimensional impact angle constrained distributed cooperative guidance law for anti-ship missiles[J]. Journal of Systems Engineering and Electro-nics, 2021, 32 (2): 447- 459.
doi: 10.23919/JSEE.2021.000038 |
22 |
LYU T , LI C J , GUO Y N , et al. Three-dimensional finite-time cooperative guidance for multiple missiles without radial velocity measurements[J]. Chinese Journal of Aeronautics, 2019, 32 (5): 1294- 1304.
doi: 10.1016/j.cja.2018.12.005 |
23 |
HE S M , KIM M , SONG T , et al. Three-dimensional salvo attack guidance considering communication delay[J]. Aerospace Science and Technology, 2018, 73, 1- 9.
doi: 10.1016/j.ast.2017.11.019 |
24 |
AI X L , WANG L L , YU J Q , et al. Field-of-view constrained two-stage guidance law design for three-dimensional salvo attack of multiple missiles via an optimal control approach[J]. Aerospace Science and Technology, 2019, 85, 334- 346.
doi: 10.1016/j.ast.2018.11.052 |
25 |
CHEN Y D , WANG J , WANG C Y , et al. Three-dimensional cooperative homing guidance law with field-of-view constraint[J]. Journal of Guidance, Control, and Dynamics, 2020, 43 (2): 389- 397.
doi: 10.2514/1.G004681 |
26 |
CHEN Z Y , CHEN W C , LIU X M , et al. Three-dimensional fixed-time robust cooperative guidance law for simultaneous attack with impact angle constraint[J]. Aerospace Science and Technology, 2021, 110, 106523.
doi: 10.1016/j.ast.2021.106523 |
27 |
ZUO Z Y . Nonsingular fixed-time consensus tracking for second-order multi-agent networks[J]. Automatica, 2015, 54, 305- 309.
doi: 10.1016/j.automatica.2015.01.021 |
28 |
MORENO J A . On strict Lyapunov functions for some non-homogeneous super-twisting algorithms[J]. Journal of the Franklin Institute, 2014, 351 (4): 1902- 1919.
doi: 10.1016/j.jfranklin.2013.09.019 |
29 |
BHAT S P , BERNSTEIN D S . Finite-time stability of continuous autonomous systems[J]. SIAM Journal on Control and Optimization, 2000, 38 (3): 751- 766.
doi: 10.1137/S0363012997321358 |
30 |
YU S , YU X H , SHIRINZADEH B , et al. Continuous finite-time control for robotic manipulators with terminal sliding mode[J]. Automatica, 2005, 41 (11): 1957- 1964.
doi: 10.1016/j.automatica.2005.07.001 |
31 |
ZHANG C , GUTIERREZ S V , PLESTAN F , et al. Adaptive super-twisting control of floating wind turbines with collective blade pitch control[J]. IFAC-PapersOnLine, 2019, 52 (4): 117- 122.
doi: 10.1016/j.ifacol.2019.08.165 |
[1] | 符小卫, 潘静. 无人机集群规避动态障碍物的分布式队形控制[J]. 系统工程与电子技术, 2022, 44(2): 529-537. |
[2] | 王双双, 李春涛, 王震, 苏子康, 戴飞. 基于自适应动态逆的着舰控制器设计[J]. 系统工程与电子技术, 2022, 44(1): 218-225. |
[3] | 张易明, 艾剑良. 基于双目视觉的空中加油锥套定位与对接控制[J]. 系统工程与电子技术, 2021, 43(10): 2940-2953. |
[4] | 陈亚东, 陈中文, 王佳楠, 单家元. 基于大气数据传感器的协同制导控制方法[J]. 系统工程与电子技术, 2020, 42(9): 2060-2065. |
[5] | 李宗星, 张锐. 基于Riccati方程的导弹自适应姿态控制[J]. 系统工程与电子技术, 2020, 42(6): 1358-1365. |
[6] | 唐伟强, 龙文堃, 孙丽娟, 黄小丽. 基于聚类方法和神经网络的非线性系统多模型自适应控制[J]. 系统工程与电子技术, 2019, 41(9): 2100-2106. |
[7] | 陶佳伟, 张涛. 具有预设性能的近距离星间相对姿轨耦合控制[J]. 系统工程与电子技术, 2019, 41(5): 1103-1109. |
[8] | 李桂英, 于志刚, 张扬. 带有角度约束的机动目标拦截协同制导律[J]. 系统工程与电子技术, 2019, 41(3): 626-635. |
[9] | 沈智鹏, 毕艳楠, 郭坦坦, 王茹. 带非线性观测器的欠驱动船舶自适应动态面输出反馈轨迹跟踪控制[J]. 系统工程与电子技术, 2019, 41(2): 409-415. |
[10] | 钟京洋, 宋笔锋. 基于L1自适应律的尾坐式飞行器悬停位置控制[J]. 系统工程与电子技术, 2018, 40(9): 2062-2070. |
[11] | 沈智鹏, 王茹. 基于DSC和MLP的欠驱动船舶自适应滑模轨迹跟踪控制[J]. 系统工程与电子技术, 2018, 40(3): 643-651. |
[12] | 王超, 张胜修, 宋仔标, 杨建业, 吴晓露. 飞行器抗饱和鲁棒自适应非线性模型预测控制[J]. 系统工程与电子技术, 2018, 40(2): 393-400. |
[13] | 魏扬, 徐浩军, 薛源. 无人机三维编队保持的自适应抗扰控制器设计[J]. 系统工程与电子技术, 2018, 40(12): 2758-2765. |
[14] | 夏川, 董朝阳, 王青, 程昊宇. 复合控制导弹反步滑模IGC自适应设计方法[J]. 系统工程与电子技术, 2018, 40(10): 2325-2333. |
[15] | 司文杰, 董训德, 曾玮. 一类严格反馈时滞系统的自适应输出反馈控制[J]. 系统工程与电子技术, 2017, 39(6): 1325-1333. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||