1 |
郑小平, 高金吉, 刘梦婷. 事故预测理论与方法[M]. 北京: 清华大学出版社, 2009.
|
|
ZHENG X P , GAO J J , LIU M T . Theory and method of accident prediction[M]. Beijing: Tsinghua University Press, 2009.
|
2 |
AKIN D , AKBA B . A neural network (NN) model to predict intersection crashes based upon driver, vehicle and roadway surface characteristics[J]. Scientific Research and Essays, 2010, 5, 2837- 2847.
|
3 |
SHILPA G , HIMANSHU A . Early prediction of driver's action using deep neural networks[J]. International Journal of Information Retrieval Research, 2019, 9 (2): 11- 27.
doi: 10.4018/IJIRR.2019040102
|
4 |
TANG Z , ZHU Y R , NIE Y Y , et al. Data-driven train set crash dynamics simulation[J]. Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility, 2017, 55 (2): 149- 167.
doi: 10.1080/00423114.2016.1249377
|
5 |
钟敏慧, 张婉露, 李有儒, 等. 基于GBDT的铁路事故类型预测及成因分析[J]. 自动化学报, 2022, 48 (2): 470- 478.
|
|
ZHONG M H , ZHANG W L , LI Y R , et al. GBDT based railway accident type prediction and cause analysis[J]. Acta Automatica Sinica, 2022, 48 (2): 470- 478.
|
6 |
CHEN L H , GUO T Y . Forecasting financial crises for an enterprise by using the grey Markov forecasting model[J]. Quality & Quantity, 2011, 45 (4): 911- 922.
|
7 |
JIANG W W . Applications of deep learning in stock market prediction: recent progress[J]. Expert Systems with Applications, 2021, 184, 115537.
doi: 10.1016/j.eswa.2021.115537
|
8 |
张建荣, 张伟, 薛楠楠, 等. 基于随机森林算法的塔式起重机安全事故预测及致因分析[J]. 安全与环境工程, 2021, 28 (5): 36- 42.
|
|
ZHANG J R , ZHANG W , XUE N N , et al. Prediction and cause analysis of tower-crane safety accidents by using random forest algorithm[J]. Safety and Environmental Engineering, 2021, 28 (5): 36- 42.
|
9 |
MARYAM P , ASRIN K , SATAR R , et al. Assessment and prediction of road accident injuries trend using time-series models in Kurdistan[J]. Burns & Trauma, 2018, 6, 9.
|
10 |
孙轶轩, 邵春福, 计寻, 等. 基于ARIMA与信息粒化SVR组合模型的交通事故时序预测[J]. 清华大学学报(自然科学版), 2014, 54 (3): 348- 353.
|
|
SUN Y X , SHAO C F , JI X , et al. Urban traffic accident time series prediction model based on combination of ARIMA and information granulation SVR[J]. Journal of Tsinghua University(Science and Technology), 2014, 54 (3): 348- 353.
|
11 |
XU F L , LIN Y Y , HUANG J X , et al. Big data driven mobile traffic understanding and forecasting: a time series approach[J]. IEEE Trans. on Services Computing, 2016, 9 (5): 796- 805.
doi: 10.1109/TSC.2016.2599878
|
12 |
ZHANG G P . Time series forecasting using a hybrid ARIMA and neural network model[J]. Neurocomputing, 2003, 50 (1): 159- 175.
|
13 |
刘春光, 陈路明, 张运银, 等. 基于改进灰色马尔可夫链的电传动装甲车辆负载需求功率预测[J]. 兵工学报, 2021, 42 (10): 2130- 2144.
|
|
LIU C G , CHEN L M , ZHANG Y Y , et al. Prediction of demand power of electric drive armoral vehicle based on improved grey Markov chain[J]. Acta Armamentarii, 2021, 42 (10): 2130- 2144.
|
14 |
ZENG B , LIU S F , XIE N M . Prediction model of interval grey number based on DGM(1, 1)[J]. Journal of Systems Engineering and Electronics, 2010, 21 (4): 598- 603.
|
15 |
LIN Y H , LEE P C , CHANG T P . Adaptive and high-precision grey forecasting model[J]. Expert Systems with Applications, 2009, 36 (6): 9658- 9662.
|
16 |
王永刚, 吕学梅. 民航事故征候的灰色马尔可夫预测[J]. 安全与环境学报, 2008, 8 (1): 163- 165.
|
|
WANG Y G , LYU X M . Grey Markov model for forecasting civil aviation incidents[J]. Journal of Safety and Environment, 2008, 8 (1): 163- 165.
|
17 |
王建华, 查怡婷, 王雪, 等. 基于核和灰度的灰色马尔可夫预测模型及应用[J]. 系统工程与电子技术, 2020, 42 (2): 398- 404.
|
|
WANG J H , ZHA Y T , WANG X , et al. Grey Markov method and its application based on kernel and degree of greyness[J]. Systems Engineering and Electronics, 2020, 42 (2): 398- 404.
|
18 |
HUANG T Y, WANG Y. Forecasting model of urban traffic accidents based on gray model GM(1, 1)[C]//Proc. of the Workshop on Digital Media & its Application in Museum & Heritages, 2007: 438-441.
|
19 |
BREIMAN L . Random forests[J]. Machine Learning, 2001, 45 (1): 5- 32.
|
20 |
FRIEDMAN J H . Greedy function approximation: a gradient boosting machine[J]. Annals of Statistics, 2001, 29 (5): 1189- 1232.
|
21 |
SCHULDT C, LAPTEV I, CAPUTO B. Recognizing human actions: a local SVM approach[C]//Proc. of the IEEE International Conference on Pattern Recognition, 2004: 32-36.
|
22 |
CHERKASSKY V , MA Y Q . Practical selection of SVM parameters and noise estimation for SVM regression[J]. Neural Networks, 2004, 17 (1): 113- 126.
|
23 |
LU W Q, LUO D Y, YAN M H. A model of traffic accident prediction based on convolutional neural network[C]//Proc. of the 2nd IEEE International Conference on Intelligent Transportation Engineering, 2017: 198-202.
|
24 |
BABU G S, ZHAO P L, LI X L. Deep convolutional neural network based regression approach for estimation of remaining useful life[C]//Proc. of the International Conference on Database Systems for Advanced Applications, 2016: 214-228.
|
25 |
HEIMES F. Recurrent neural networks for remaining useful life estimation[C]//Proc. of the Prognostics and Health Mana-gement, 2008.
|
26 |
SALAH B , ALI F , ALI O , et al. Optimal deep learning LSTM model for electric load forecasting using feature selection and genetic algorithm: comparison with machine learning approaches[J]. Energies, 2018, 11 (7): 1636- 1636.
|
27 |
SUNDERMEYER M , NEY H , SCHLUTER R . From feedforward to recurrent LSTM neural networks for language modeling[J]. IEEE/ACM Trans. on Audio, Speech, and Language Processing, 2015, 23 (3): 517- 529.
|
28 |
曾航, 张红梅, 任博, 等. 基于改进LSTM模型的航空安全预测方法研究[J]. 系统工程与电子技术, 2022, 44 (2): 569- 576.
|
|
ZENG H , ZHANG H M , REN B , et al. Aviation safety prediction method research based on improved LSTM model[J]. Systems Engineering and Electronics, 2022, 44 (2): 569- 576.
|
29 |
GITE S , AGRAWAL H . Early prediction of driver's action using deep neural networks[J]. International Journal of Information Retrieval Research, 2019, 9 (2): 11- 27.
|
30 |
马春茂, 邵延君, 潘宏侠, 等. 基于灰色马尔可夫模型的装备故障间隔期预测研究[J]. 兵工学报, 2013, 34 (9): 1193- 1196.
|
|
MA C M , SHAO Y J , PAN H X , et al. TBF prediction of equipment based on the grey Markov model[J]. Acta Armamentarii, 2013, 34 (9): 1193- 1196.
|
31 |
TAREK B , MOUSS H , KADRI O , et al. Aircraft engines remaining useful life prediction with an improved online sequential extreme learning machine[J]. Applied Sciences, 2020, 10 (3): 1602.
|