| 1 | 郑小平, 高金吉, 刘梦婷.  事故预测理论与方法[M]. 北京: 清华大学出版社, 2009. | 
																													
																						|  | ZHENG X P ,  GAO J J ,  LIU M T .  Theory and method of accident prediction[M]. Beijing: Tsinghua University Press, 2009. | 
																													
																						| 2 | AKIN D ,  AKBA B .  A neural network (NN) model to predict intersection crashes based upon driver, vehicle and roadway surface characteristics[J]. Scientific Research and Essays, 2010, 5, 2837- 2847. | 
																													
																						| 3 | SHILPA G ,  HIMANSHU A .  Early prediction of driver's action using deep neural networks[J]. International Journal of Information Retrieval Research, 2019, 9 (2): 11- 27. doi: 10.4018/IJIRR.2019040102
 | 
																													
																						| 4 | TANG Z ,  ZHU Y R ,  NIE Y Y , et al.  Data-driven train set crash dynamics simulation[J]. Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility, 2017, 55 (2): 149- 167. doi: 10.1080/00423114.2016.1249377
 | 
																													
																						| 5 | 钟敏慧, 张婉露, 李有儒, 等.  基于GBDT的铁路事故类型预测及成因分析[J]. 自动化学报, 2022, 48 (2): 470- 478. | 
																													
																						|  | ZHONG M H ,  ZHANG W L ,  LI Y R , et al.  GBDT based railway accident type prediction and cause analysis[J]. Acta Automatica Sinica, 2022, 48 (2): 470- 478. | 
																													
																						| 6 | CHEN L H ,  GUO T Y .  Forecasting financial crises for an enterprise by using the grey Markov forecasting model[J]. Quality & Quantity, 2011, 45 (4): 911- 922. | 
																													
																						| 7 | JIANG W W .  Applications of deep learning in stock market prediction: recent progress[J]. Expert Systems with Applications, 2021, 184, 115537. doi: 10.1016/j.eswa.2021.115537
 | 
																													
																						| 8 | 张建荣, 张伟, 薛楠楠, 等.  基于随机森林算法的塔式起重机安全事故预测及致因分析[J]. 安全与环境工程, 2021, 28 (5): 36- 42. | 
																													
																						|  | ZHANG J R ,  ZHANG W ,  XUE N N , et al.  Prediction and cause analysis of tower-crane safety accidents by using random forest algorithm[J]. Safety and Environmental Engineering, 2021, 28 (5): 36- 42. | 
																													
																						| 9 | MARYAM P ,  ASRIN K ,  SATAR R , et al.  Assessment and prediction of road accident injuries trend using time-series models in Kurdistan[J]. Burns & Trauma, 2018, 6, 9. | 
																													
																						| 10 | 孙轶轩, 邵春福, 计寻, 等.  基于ARIMA与信息粒化SVR组合模型的交通事故时序预测[J]. 清华大学学报(自然科学版), 2014, 54 (3): 348- 353. | 
																													
																						|  | SUN Y X ,  SHAO C F ,  JI X , et al.  Urban traffic accident time series prediction model based on combination of ARIMA and information granulation SVR[J]. Journal of Tsinghua University(Science and Technology), 2014, 54 (3): 348- 353. | 
																													
																						| 11 | XU F L ,  LIN Y Y ,  HUANG J X , et al.  Big data driven mobile traffic understanding and forecasting: a time series approach[J]. IEEE Trans. on Services Computing, 2016, 9 (5): 796- 805. doi: 10.1109/TSC.2016.2599878
 | 
																													
																						| 12 | ZHANG G P .  Time series forecasting using a hybrid ARIMA and neural network model[J]. Neurocomputing, 2003, 50 (1): 159- 175. | 
																													
																						| 13 | 刘春光, 陈路明, 张运银, 等.  基于改进灰色马尔可夫链的电传动装甲车辆负载需求功率预测[J]. 兵工学报, 2021, 42 (10): 2130- 2144. | 
																													
																						|  | LIU C G ,  CHEN L M ,  ZHANG Y Y , et al.  Prediction of demand power of electric drive armoral vehicle based on improved grey Markov chain[J]. Acta Armamentarii, 2021, 42 (10): 2130- 2144. | 
																													
																						| 14 | ZENG B ,  LIU S F ,  XIE N M .  Prediction model of interval grey number based on DGM(1, 1)[J]. Journal of Systems Engineering and Electronics, 2010, 21 (4): 598- 603. | 
																													
																						| 15 | LIN Y H ,  LEE P C ,  CHANG T P .  Adaptive and high-precision grey forecasting model[J]. Expert Systems with Applications, 2009, 36 (6): 9658- 9662. | 
																													
																						| 16 | 王永刚, 吕学梅.  民航事故征候的灰色马尔可夫预测[J]. 安全与环境学报, 2008, 8 (1): 163- 165. | 
																													
																						|  | WANG Y G ,  LYU X M .  Grey Markov model for forecasting civil aviation incidents[J]. Journal of Safety and Environment, 2008, 8 (1): 163- 165. | 
																													
																						| 17 | 王建华, 查怡婷, 王雪, 等.  基于核和灰度的灰色马尔可夫预测模型及应用[J]. 系统工程与电子技术, 2020, 42 (2): 398- 404. | 
																													
																						|  | WANG J H ,  ZHA Y T ,  WANG X , et al.  Grey Markov method and its application based on kernel and degree of greyness[J]. Systems Engineering and Electronics, 2020, 42 (2): 398- 404. | 
																													
																						| 18 | HUANG T Y, WANG Y. Forecasting model of urban traffic accidents based on gray model GM(1, 1)[C]//Proc. of the Workshop on Digital Media & its Application in Museum & Heritages, 2007: 438-441. | 
																													
																						| 19 | BREIMAN L .  Random forests[J]. Machine Learning, 2001, 45 (1): 5- 32. | 
																													
																						| 20 | FRIEDMAN J H .  Greedy function approximation: a gradient boosting machine[J]. Annals of Statistics, 2001, 29 (5): 1189- 1232. | 
																													
																						| 21 | SCHULDT C, LAPTEV I, CAPUTO B. Recognizing human actions: a local SVM approach[C]//Proc. of the IEEE International Conference on Pattern Recognition, 2004: 32-36. | 
																													
																						| 22 | CHERKASSKY V ,  MA Y Q .  Practical selection of SVM parameters and noise estimation for SVM regression[J]. Neural Networks, 2004, 17 (1): 113- 126. | 
																													
																						| 23 | LU W Q, LUO D Y, YAN M H. A model of traffic accident prediction based on convolutional neural network[C]//Proc. of the 2nd IEEE International Conference on Intelligent Transportation Engineering, 2017: 198-202. | 
																													
																						| 24 | BABU G S, ZHAO P L, LI X L. Deep convolutional neural network based regression approach for estimation of remaining useful life[C]//Proc. of the International Conference on Database Systems for Advanced Applications, 2016: 214-228. | 
																													
																						| 25 | HEIMES F. Recurrent neural networks for remaining useful life estimation[C]//Proc. of the Prognostics and Health Mana-gement, 2008. | 
																													
																						| 26 | SALAH B ,  ALI F ,  ALI O , et al.  Optimal deep learning LSTM model for electric load forecasting using feature selection and genetic algorithm: comparison with machine learning approaches[J]. Energies, 2018, 11 (7): 1636- 1636. | 
																													
																						| 27 | SUNDERMEYER M ,  NEY H ,  SCHLUTER R .  From feedforward to recurrent LSTM neural networks for language modeling[J]. IEEE/ACM Trans. on Audio, Speech, and Language Processing, 2015, 23 (3): 517- 529. | 
																													
																						| 28 | 曾航, 张红梅, 任博, 等.  基于改进LSTM模型的航空安全预测方法研究[J]. 系统工程与电子技术, 2022, 44 (2): 569- 576. | 
																													
																						|  | ZENG H ,  ZHANG H M ,  REN B , et al.  Aviation safety prediction method research based on improved LSTM model[J]. Systems Engineering and Electronics, 2022, 44 (2): 569- 576. | 
																													
																						| 29 | GITE S ,  AGRAWAL H .  Early prediction of driver's action using deep neural networks[J]. International Journal of Information Retrieval Research, 2019, 9 (2): 11- 27. | 
																													
																						| 30 | 马春茂, 邵延君, 潘宏侠, 等.  基于灰色马尔可夫模型的装备故障间隔期预测研究[J]. 兵工学报, 2013, 34 (9): 1193- 1196. | 
																													
																						|  | MA C M ,  SHAO Y J ,  PAN H X , et al.  TBF prediction of equipment based on the grey Markov model[J]. Acta Armamentarii, 2013, 34 (9): 1193- 1196. | 
																													
																						| 31 | TAREK B ,  MOUSS H ,  KADRI O , et al.  Aircraft engines remaining useful life prediction with an improved online sequential extreme learning machine[J]. Applied Sciences, 2020, 10 (3): 1602. |