系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (7): 2069-2077.doi: 10.12305/j.issn.1001-506X.2023.07.17
陈志伟1,2, 焦健3,*, 赵廷弟3, 褚嘉运4
收稿日期:
2022-01-11
出版日期:
2023-06-30
发布日期:
2023-07-11
通讯作者:
焦健
作者简介:
陈志伟 (1991—), 男, 副教授, 博士, 主要研究方向为无人系统可靠性与安全性、装备体系弹性、无人集群任务规划基金资助:
Zhiwei CHEN1,2, Jian JIAO3,*, Tingdi ZHAO3, Jiayun CHU4
Received:
2022-01-11
Online:
2023-06-30
Published:
2023-07-11
Contact:
Jian JIAO
摘要:
武器装备体系是国防领域发展的战略需要, 弹性是体系对缺陷、破坏做出响应和恢复的能力。本文给出了装备体系弹性发展现状、应用前景及有关建议。首先, 对武器装备及其弹性的概念与发展现状进行辨析。其次, 对不同领域弹性建模与分析评价方法进行评述。然后, 分析给出装备体系弹性内涵及多层级分析框架。最后, 对现有研究不足进行总结, 并从技术发展及工程应用角度给出装备体系弹性未来发展趋势与建议。致力于推动装备体系弹性相关技术发展, 提出相应发展建议, 提升装备体系效能与实战化水平。
中图分类号:
陈志伟, 焦健, 赵廷弟, 褚嘉运. 武器装备体系弹性技术研究综述[J]. 系统工程与电子技术, 2023, 45(7): 2069-2077.
Zhiwei CHEN, Jian JIAO, Tingdi ZHAO, Jiayun CHU. Review on resilience technology of weapon system-of-systems[J]. Systems Engineering and Electronics, 2023, 45(7): 2069-2077.
表1
装备体系定义"
出处 | 定义 |
总装备部机关 | 装备体系是根据军事需求、经济和技术能力, 由一定数量和质量相互关联、功能互补的多种装备, 按照装备的优化配置和提高整体作战能力的要求, 综合集成的装备类别、结构和规模的有机整体。装备体系由战斗装备、保障装备组成。装备体系随着军事需求的变化和科学技术的发展而演变 |
文献[ | 装备体系是在战略战术指导、作战指挥和保障条件下, 为实现特定任务使命, 由功能上相互耦合和作用的各类装备所组成的高层次系统 |
文献[ | 装备体系包含一组或一系列系统, 系统独立时也可以发挥其功能, 也可以聚集成为一个更大的可以实现特有能力的大系统 |
文献[ | 装备体系作为一类典型的体系, 现已成为军事领域体系研究的重要对象。装备体系需求是指在规定的条件下, 为完成预设的使命任务, 达到预期效果, 对装备的性能、组成、作战、能力等各方面的要求 |
表2
不同领域的弹性定义"
领域 | 出处 | 定义 |
生态系统 | Holling | 弹性是生态系统的一个属性, 该属性使生态系统能够在吸收扰动和变化后依然存在, 并保持种群状态平衡的能力, 这也是弹性概念最早被引入到科学研究领域中 |
社会学 | 文献[ | 群体或社区应对社会、政治和环境等变化所引起的外部压力和干扰的能力 |
文献[ | 社会系统在面对内外部干扰和变化时保持其功能结构并在必要时平滑地降低其性能的能力 | |
经济学 | 文献[ | 为应对灾害所具有的本能的、适应性的反应, 使得个人和群体能够避免一些潜在的损失 |
文献[ | 经济弹性是系统在面对市场冲击仍然可以有效地进行资源配置的能力 | |
工程 | 文献[ | 系统或组织在早期阶段对干扰作出反应和从干扰中恢复的能力 |
表4
装备体系弹性常用建模方法分析对比"
方法 | 适用性 | 不足 |
随机过程 | 可用于信息较少的早期设计与需求获取阶段; 可用于简单可重构和可维修系统的建模 | 状态爆炸, 对大规模装备体系求解困难 |
Petri网 | 可有效描述装备体系结构框架与功能, 及其并发、交互等动态行为, 对装备体系的建模与仿真有较强的适用性和可扩展性 | Petri网模型描述有的偏重于某一具体环节, 有的缺乏层次上的描述, 有的缺少对故障及恢复过程的表达, 难以刻画大规模作战体系的复杂性 |
复杂网络 | 从网络科学角度提出装备体系拓扑结构的建模方法, 具有宏观指标、微观指标的度量。可有效表达装备体系结构的涌现性 | 仅关注体系结构特性, 没有对各类组成系统的特性和性能变化进行考量 |
33 | GRIENDLING K, MAVRIS D N. Development of a dodaf-based executable architecting approach to analyze system-of-systems alternatives[C]//Proc. of the Aerospace Conference, 2011. |
34 | LI J , WANG Y , ZHONG J L , et al. Network resilience assessment and reinforcement strategy against cascading failure[J]. Chaos, Solitons & Fractals, 2022, 160, 112271. |
35 |
GUO Z J , WANG Y , ZHONG J L , et al. Effect of load-capacity he-terogeneity on cascading overloads in networks[J]. Chaos: an Interdisciplinary Journal of Nonlinear Science, 2021, 31 (12): 123104.
doi: 10.1063/5.0056152 |
36 | 潘星, 蒋卓, 杨艳京. 基于弹性的体系组件重要度及恢复策略[J]. 北京航空航天大学学报, 2017, 43 (9): 1713- 1720. |
PAN X , JIANG Z , YANG Y J . Resilience-based component importance and recovery strategy for system-of-systems[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43 (9): 1713- 1720. | |
37 | 张俊. 装备体系结构脆性评价研究[D]. 北京: 北京航空航天大学, 2013. |
ZHANG J. Research on brittleness evaluation of equipment architecture[D]. Beijing: Beijing University, 2013. | |
38 |
白光晗, 张涛, 郭波. 以可靠性为中心的多状态单源单汇网络路径优化[J]. 科学技术与工程, 2011, 11 (8): 1673- 1677.
doi: 10.3969/j.issn.1671-1815.2011.08.005 |
BAI G H , ZHANG T , GUO B . Reliability centered path optimization of multi state single source single sink network[J]. Science, Technology and Engineering, 2011, 11 (8): 1673- 1677.
doi: 10.3969/j.issn.1671-1815.2011.08.005 |
|
39 | 刘彦, 陈春良, 昝翔, 等. 考虑双层耦合复杂网络的装备重要度评估方法[J]. 兵工学报, 2018, 39 (9): 1829- 1840. |
LIU Y , CHEN C L , ZAN X , et al. Equipment importance evaluation method considering double-layer coupled complex network[J]. Journal of Ordnance Industry, 2018, 39 (9): 1829- 1840. | |
40 | 郭业波. 基于DoDAF和Petri网预警雷达系统建模及效能评估研究[D]. 成都: 电子科技大学, 2018. |
GUO Y B. Research on modeling and effectiveness evaluation of early warning radar system based on DoDAF and Petri net[D]. Chengdu: University of Electronic Science and Technology of China, 2018. | |
41 | 朱承, 江小平, 肖开明, 等. 基于动态多重网络的目标体系建模与分析[J]. 指挥与控制学报, 2016, 2 (4): 296- 301. |
ZHU C , JIANG X P , XIAO K M , et al. Modeling and analysis of target system based on dynamic multiple networks[J]. Journal of Command and Control, 2016, 2 (4): 296- 301. | |
42 | TRAN H T , DOMERÇANT J C , MAVRIS D N . A network-based cost comparison of resilient and robust system-of-systems[J]. Procedia Computer Science, 2016, 95, 126- 133. |
43 | SUN Q , LI H X , WANG Y Z , et al. Multi-swarm-based coope-rative reconfiguration model for resilient unmanned weapon system-of-systems[J]. Reliability Engineering & System Safety, 2022, 222, 108426. |
44 | GAMA D D , RAMIREZ-MARQUEZ J E , BARKER K . Multidimensional approach to complex system resilience analysis[J]. Reli-ability Engineering & System Safety, 2016, 149, 34- 43. |
45 | BRUNEAU M , CHANG S E , EGUCHI R T , et al. A framework to quantitatively assess and enhance the seismic resilience of communities[J]. Earthquake Spectra, 2003, 19 (4): 733- 752. |
46 | HENRY D , RAMIREZ-MARQUEZ J E . Generic metrics and quantitative approaches for system resilience as a function of time[J]. Reliability Engineering & System Safety, 2012, 99, 114- 122. |
47 | FRANCIS R , BEKERA B . A metric and frameworks for resilience analysis of engineered and infrastructure systems[J]. Reliability Engineering & System Safety, 2014, 121, 90- 103. |
48 | HOSSEINI S , BARKER K . Modeling infrastructure resilience using Bayesian networks: a case study of inland waterway ports[J]. Computers & Industrial Engineering, 2016, 93, 252- 266. |
49 | ZHAO S X , LIU X , ZHUO Y . Hybrid hidden markov models for resilience metric in a dynamic infrastructure system[J]. IFAC-PapersOnLine, 2016, 49 (12): 343- 348. |
1 | SAGE A P , CUPPAN C D . On the systems engineering and management of systems of systems and federations of systems[J]. Information-Knowledge-Systems Management, 2001, 2 (4): 325- 345. |
2 | 陈志伟, 王靖, 谷长超, 等. 考虑动态重构的装备体系可用性及弹性分析[J]. 系统工程与电子技术, 2021, 43 (8): 2347- 2354. |
CHEN Z W , WANG J , GU C C , et al. Performance availability and resilience analysis of weapon system of systems considering dynamic reconfiguration[J]. Systems Engineering and Electronics, 2021, 43 (8): 2347- 2354. | |
3 | CHEN Z W, ZHAO T D, JIAO J, et al. System of systems architecture modeling and mission reliability analysis based on DoDAF and Petri net[C]//Proc. of the Annual Reliability and Maintainability Symposium, 2019. |
4 |
SHENHAR A J , BONEN Z . The new taxonomy of systems: toward an adaptive systems engineering framework[J]. IEEE Trans.on Systems, Man, and Cybernetics-Part A: Systems and Humans,, 1997, 27 (2): 137- 145.
doi: 10.1109/3468.554678 |
5 | Department of Defense. System of systems engineering, in de-nfense acquisition guidebook[M]. Washington D.C. : Department of Defense, 2004. |
6 | 谭跃进, 赵娟, 吴俊, 等. 基于路径的网络可靠性研究综述[J]. 系统工程理论与实践, 2012, 32 (12): 2724- 2730. |
TAN Y J , ZHAO J , WU J . Review on the network reliability based on paths[J]. System Engineering Theory and Practice, 2012, 32 (12): 2724- 2730. | |
7 |
谭跃进, 赵青松. 体系工程的研究与发展[J]. 中国电子科学研究院学报, 2011, 6 (5): 441- 445.
doi: 10.3969/j.issn.1673-5692.2011.05.001 |
TAN Y J , ZHAO Q S . A research on system-of-systems and system-of-systems engineering[J]. Journal of China Academy of Electronics and Information Technology, 2011, 6 (5): 441- 445.
doi: 10.3969/j.issn.1673-5692.2011.05.001 |
|
8 | 杨克巍, 赵青松, 谭跃进. 体系需求工程技术与方法[M]. 北京: 科学出版社, 2011. |
YANG K W , ZHAO Q S , TAN Y J . System requirements engineering technology and method[M]. Beijing: Science Press, 2011. | |
9 | 赵青松, 杨克巍. 体系工程与体系结构建模方法与技术[M]. 北京: 国防工业出版社, 2013. |
ZHAO Q S , YANG K W . System engineering and architecture modeling methods and technologies[M]. Beijing: National Defense Industry Press, 2013. | |
10 | 李清韦, 刘俊先, 陈涛. 基于活动环路的作战网络节点重要度评估方法[J]. 火力与指挥控制, 2019, 44 (8): 12- 16. |
LI Q W , LIU J X , CHEN T . An evaluation method of node importance of operational network based on active Loop[J]. Fire and Command Control, 2019, 44 (8): 12- 16. | |
11 | 刘俊先, 罗爱民, 陈涛, 等. 军事架构技术[M]. 北京: 科学出版社, 2018. |
LIU J X , LUO A M , CHEN T , et al. Military architecture technology[M]. Beijing: Science Press, 2018. | |
12 |
PAN X , WANG H X . Resilience based importance measure analysis for SoS[J]. Journal of Systems Engineering and Electronics, 2019, 30 (5): 920- 930.
doi: 10.21629/JSEE.2019.05.10 |
13 |
PAN X , WANG H X . Resilience of and recovery strategies for weighted networks[J]. PLoS ONE, 2018, 13 (9): e0203894.
doi: 10.1371/journal.pone.0203894 |
14 | 夏晓凯. 面向效能评估的系统体系结构仿真与优化技术研究[D]. 北京: 北京航空航天大学, 2014. |
XIA X K. Research on system architecture simulation and optimization technology for effectiveness evaluation[D]. Beijing: Beihang University, 2014. | |
15 | 钟季龙. 复杂网络过载级联失效的故障规律与弹性恢复研究[D]. 西安: 空军工程大学, 2019. |
ZHONG J L. Research on fault law and resilience recovery of overload cascade failure in complex networks[D]. Xi'an: Air Force Engineering University, 2019. | |
16 |
ADGER W N . Social and ecological resilience: are they related?[J]. Progress in Human Geography, 2000, 24 (3): 347- 364.
doi: 10.1191/030913200701540465 |
17 |
ALLENBY B . Toward inherently secure and resilient societies[J]. Science, 2005, 309 (5737): 1034- 1036.
doi: 10.1126/science.1111534 |
18 |
ROSE A . Defining and measuring economic resilience to disasters[J]. Disaster Prevention and Management: an International Journal, 2004, 13 (4): 307- 314.
doi: 10.1108/09653560410556528 |
19 |
PERRINGS C . Resilience and sustainable development[J]. Environment and Development Economics, 2006, 11 (4): 417- 427.
doi: 10.1017/S1355770X06003020 |
20 | HOLLNAGEL E , WOODS D D , LEVESON N . Resilience engineering: concepts and precepts[M]. Burlington: Ashgate, 2006. |
21 | OUYANG M , WANG Z . Resilience assessment of interdependent infrastructure systems: with a focus on joint restoration modeling and analysis[J]. Reliability Engineering & System Safety, 2015, 141, 74- 82. |
22 | FAN D M , SUN B , DUI H Y , et al. A modified connectivity link addition strategy to improve the resilience of multiplex networks against attacks[J]. Reliability Engineering & System Safety, 2022, 221, 108294. |
23 |
MOLYNEAUX L , BROWN C , WAGNER L , et al. Measuring resilience in energy systems: insights from a range of disciplines[J]. Renewable and Sustainable Energy Reviews, 2016, 59, 1068- 1079.
doi: 10.1016/j.rser.2016.01.063 |
24 | WOODS D D . Four concepts for resilience and the implications for the future of resilience engineering[J]. Reliability Engineering & System Safety, 2015, 141, 5- 9. |
50 | REN F C , ZHAO T D , JIAO J , et al. Resilience optimization for complex engineered systems based on the multi-dimensional resilience concept[J]. IEEE Access, 2017, 5, 19352- 19362. |
51 | HOSSEINI S , BARKER K , RAMIREZ-MARQUEZ J E . A review of definitions and measures of system resilience[J]. Reliability Engineering & System Safety, 2016, 145, 47- 61. |
52 | OUYANG M , DUEÑAS-OSORIO L , MIN X . A three-stage resi-lience analysis framework for urban infrastructure systems[J]. Structural Safety, 2012, 36/37, 23- 31. |
53 | ZENG G W , LI D Q , GUO S , et al. Switch between critical percolation modes in city traffic dynamics[J]. Proceedings of the National Academy of Sciences, 2019, 116 (1): 23- 28. |
54 | ZOBEL C W . Representing perceived tradeoffs in defining disaster resilience[J]. Decision Support Systems, 2011, 50 (2): 394- 403. |
55 | ZOBEL C W , KHANSA L . Characterizing multi-event disaster resilience[J]. Computers & Operations Research, 2014, 42, 83- 94. |
56 | FENG Q , JIEZHAO X , FAN D , et al. Resilience design method based on meta-structure: a case study of offshore wind farm[J]. Reliability Engineering & System Safety, 2019, 186, 232- 244. |
57 | CHEN Z W , ZHAO T D , JIAO J , et al. Performance-threshold-based resilience analysis of system of systems by considering dynamic reconfiguration[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2022, 236 (14): 1828- 1838. |
25 |
ARJOMANDI-NEZHAD A , FOTUHI-FIRUZABAD M , MOEINI-AGHTAIE M , et al. Modeling and optimizing recovery strategies for power distribution system resilience[J]. IEEE Systems Journal, 2021, 15 (4): 4725- 4734.
doi: 10.1109/JSYST.2020.3020058 |
26 |
MAIER M W . Architecting principles for systems-of-systems[J]. INCOSE International Symposium, 1996, 6 (1): 565- 573.
doi: 10.1002/j.2334-5837.1996.tb02054.x |
27 | PEI R S. Systems of systems integration (SoSI)-a smart way of acquiring army C4I2WS systems[C]//Proc. of the Summer Computer Simulation Conference, 2000. |
28 | GOERGER S R. Engineered resilient systems (ERS) overview[R]. Washington D.C. : US Army Engineer Research and Development Center, 2013. |
29 | WOODS D D . Resilience engineering: concepts and precepts[M]. London: CRC Press, 2006. |
30 |
谭跃进, 赵青松. 体系工程的研究与发展[J]. 中国电子科学研究院学报, 2011, 6 (5): 441- 445.
doi: 10.3969/j.issn.1673-5692.2011.05.001 |
TAN Y J , ZHAO Q S . Research and development of system engineering[J]. Journal of China Academy of Electronic Sciences, 2011, 6 (5): 441- 445.
doi: 10.3969/j.issn.1673-5692.2011.05.001 |
|
31 |
GOERGER S R , MADNI A M , ESLINGER O J . Engineered resilient systems: a DoD perspective[J]. Procedia Computer Science, 2014, 28, 865- 872.
doi: 10.1016/j.procs.2014.03.103 |
32 |
GAO J X , BARZEL B , BARABÁSI A L . Universal resilience patterns in complex networks[J]. Nature, 2016, 530, 307- 312.
doi: 10.1038/nature16948 |
[1] | 李昕泽, 周文雅, 刘凯, 王博. 可达区域内最佳着陆场的筛选方法[J]. 系统工程与电子技术, 2023, 45(6): 1712-1721. |
[2] | 秦长江, 吴克宇, 成清, 黄金才. 基于杀伤网贡献率的动态体系节点重要度评估[J]. 系统工程与电子技术, 2023, 45(6): 1732-1742. |
[3] | 方伟光, 聂兆伟, 刘宸宁, 李浩, 那洋, 王辉雄, 洪东跑. 数字孪生驱动的武器装备智能保障技术研究[J]. 系统工程与电子技术, 2023, 45(4): 1247-1260. |
[4] | 王耀祖, 尚柏林, 宋笔锋, 李鹏飞, 科尔沁. 基于杀伤链的作战体系网络关键节点识别方法[J]. 系统工程与电子技术, 2023, 45(3): 736-744. |
[5] | 陈子夷, 豆亚杰, 徐向前, 谭跃进, 杨克巍, 姜江. 共建共享双层策略驱动的复杂装备组合优化求解[J]. 系统工程与电子技术, 2023, 45(2): 431-443. |
[6] | 徐任杰, 宫琳, 谢剑, 刘欣, 杨克巍. 基于装备体系韧性的作战网络链路重要度评估及恢复策略[J]. 系统工程与电子技术, 2023, 45(1): 139-147. |
[7] | 李峻森, 方依宁, 张云安, 白光晗, 陶俊勇. 面向任务的装备保障体系多Agent建模与评估方法[J]. 系统工程与电子技术, 2023, 45(1): 279-290. |
[8] | 王峻洲, 王华伟, 侯召国. 基于相似体系的民机结构超手册维修案例分析[J]. 系统工程与电子技术, 2022, 44(9): 2978-2985. |
[9] | 龚建兴, 朱雷, 王华兵, 丁佩元, 路程昭. 基于功能图的作战体系关键节点分析[J]. 系统工程与电子技术, 2022, 44(8): 2515-2521. |
[10] | 刘戎翔, 吴琳, 谢智歌, 刘虹麟. 基于生成对抗网络的防空体系态势辅助分析[J]. 系统工程与电子技术, 2022, 44(8): 2522-2529. |
[11] | 浣顺启, 方哲梅, 王剑波. 基于功能依赖网的体系效能评估方法[J]. 系统工程与电子技术, 2022, 44(7): 2191-2200. |
[12] | 姜江, 金前程, 徐雪明, 侯帅, 李际超. 智能化时代国防科技体系工程初探[J]. 系统工程与电子技术, 2022, 44(6): 1880-1888. |
[13] | 张佳唯, 钱凤臣, 杨俊强, 赵骞, 张峥嵘. 弹性光网络中路由与频谱分配算法综述[J]. 系统工程与电子技术, 2022, 44(6): 2001-2010. |
[14] | 马骏, 杨镜宇, 吴曦. 基于预聚类主动半监督的作战体系效能评估[J]. 系统工程与电子技术, 2022, 44(6): 1889-1896. |
[15] | 王茂桓, 刘泽苁, 梁浩哲, 张英朝, 孙蕾. 多类型体系贡献率评估的综合问题研究[J]. 系统工程与电子技术, 2022, 44(5): 1572-1580. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||