1 |
MAO D Q , ZHANG Y , ZHANG Y C , et al. Super-resolution Doppler beam sharpening method using fast iterative adaptive approach-based spectral estimation[J]. Journal of Applied Remote Sensing, 2018, 12 (1)
doi: 10.1117/1.JRS.12.015020
|
2 |
庞礴, 代大海, 邢世其, 等. 前视SAR成像技术的发展和展望[J]. 系统工程与电子技术, 2013, 35 (11): 2283- 2291.
|
|
PAND B , DAI D H , XING S Q , et al. Development and perspective of forward-looking SAR imaging technique[J]. Systems Engineering and Electronics, 2013, 35 (11): 2283- 2291.
|
3 |
RICHARDS M A. Iterative noncoherent angular superresolution (radar)[C]//Proc. of the IEEE National Radar Conference, 1988.
|
4 |
RICHARDS M. Iterative deconvolution in noncoherent systems[C]//Proc. of the IEEE International Conference on Acoustics, Speech, & Signal Processing, 1985.
|
5 |
RICHARDS M, MORRIS C, HAYES M. Iterative enhancement of noncoherent radar data[C]///Proc. of the IEEE International Conference on Acoustics, Speech, & Signal Processing, 1986.
|
6 |
TIKHONOV A N, ARSENIN V Y. Solution of ill-posed problem[M]. Washington, D C: winston, 1977.
|
7 |
ZHU X X , BAMLER R . Tomographic SAR inversion by L1 norm regularization-the compressive sensing approach[J]. IEEE Trans.on Geoscience and Remote Sensing, 2010, 48 (10): 3839- 3846.
doi: 10.1109/TGRS.2010.2048117
|
8 |
GOLDSTEIN T , OSHER S . The split Bregman algorithm for L1 regularized problems[J]. IAM Journal on Imaging Sciences, 2008,
|
9 |
FANG L , ABASCAL J , DESCO M , et al. Total variation regularization with split Bregman based method in magnetic induction tomography using experimental data[J]. IEEE Sensors Journal, 2017, 17 (4): 976- 85.
doi: 10.1109/JSEN.2016.2637411
|
10 |
WU Y, ZHANG Y, ZHANG Y C, et al. Outline reconstruction for radar forward-looking imaging based on total variation functional deconvloution methodxs[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2018: 7267-7270.
|
11 |
ZHANG Y , TUO X Y , HUANG Y L , et al. A TV forward-looking super-resolution imaging method based on tsvd strategy for scanning radar[J]. IEEE Trans.on Geoscience and Remote Sensing, 2020, 58 (7): 4517- 4528.
doi: 10.1109/TGRS.2019.2958085
|
12 |
HUANG Y L , ZHA Y B , WANG Y , et al. Forward looking radar imaging by truncated singular value decomposition and its application for adverse weather aircraft landing[J]. Sensors, 2015, 15 (6): 14397- 14414.
doi: 10.3390/s150614397
|
13 |
查月波. 基于凸优化的雷达超分辨成像理论与方法研究[D]. 成都: 电子科技大学, 2016.
|
|
CHA Y B. Radar super-resolution imaging theory and methods study based on convex optimization[D]. Chengdu: University of Electronic Science and Technology of China, 2016.
|
14 |
管金称. 基于统计优化的雷达扫描波束超分辨[D]. 成都: 电子科技大学, 2015.
|
|
GUAN J C. Radar scanning beam super-resolution based on statistical optimization[D]. Chengdu: University of Electronic Science and Technology of China, 2015.
|
15 |
ZHANG Y , HUANG Y L , ZHA Y B , et al. Superresolution imaging for forward-looking scanning radar with generalized Gaussian constraint[J]. Progress in Electromagnetics Research M, 2016,
doi: 10.2528/PIERM15120805
|
16 |
ZHA Y B , HUANG Y L , SUN Z , et al. Bayesian deconvolution for angular super-resolution in forward-looking scanning radar[J]. Sensors, 2015, 15 (3): 6924- 6946.
doi: 10.3390/s150306924
|
17 |
ZHANG Z, RAO B D. Recovery of block sparse signals using the framework of block sparse Bayesian learning[C]//Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012.
|
18 |
ZHANG Z , RAO B D . Exploiting correlation in sparse signal recovery problems: multiplen measurement vectors, block sparsity, and time-varying sparsity[J]. Mathematics, 2011,
doi: 10.48550/arXiv.1105.0725
|
19 |
ZHANG Z , RAO B D . Extension of SBL algorithms for the recovery of block sparse signals with intra-block correlation[J]. IEEE Trans.on Signal Processing, 2013, 61 (8): 2009- 2024.
doi: 10.1109/TSP.2013.2241055
|
20 |
DUAN H P , ZHANG L Z , FANG J , et al. Pattern-coupled sparse bayesian learning for inverse synthetic aperture radar imaging[J]. IEEE Signal Processing Letters, 2015, 22 (11): 1995- 2004.
doi: 10.1109/LSP.2015.2452412
|
21 |
FANG J , ZHANG L Z , LI H B . Two-dimensional pattern-coupled sparse bayesian learning via generalized approximate message passing[J]. IEEE Trans.on Image Processing, 2016, 25 (6): 2920- 2930.
doi: 10.1109/TIP.2016.2556582
|
22 |
GOLUB G H , WAHBA H G . Generalized cross-validation as a method for choosing a good ridge parameter[J]. Technometrics, 1979, 21 (2): 215- 223.
doi: 10.1080/00401706.1979.10489751
|
23 |
ZHOU W , BOVIK A C . Mean squared error: love it or leave it? A new look at signal fidelity measures[J]. IEEE Signal Processing Magazine, 2009, 26 (1): 98- 117.
doi: 10.1109/MSP.2008.930649
|