1 |
CHEN V C , LI F , HO S S , et al. Micro-Doppler effect in radar: phenomenon model and simulation study[J]. IEEE Trans.on Aerospace and Electronic Systems, 2006, 42 (1): 2- 21.
|
2 |
XIA S Q , ZHANG C W , CAI W Y , et al. Aircraft target classification method for conventional narrowband radar based on micro-Doppler effect[J]. Mathematical Problems in Engineering, 2022, 2022, 3154854.
|
3 |
唐明磊, 张文鹏, 姜卫东, 等. 基于多分辨率显著性滤波的微动信号增强方法[J]. 系统工程与电子技术, 2022, 44 (4): 1148- 1157.
|
|
TANG M L , ZHANG W P , JIANG W D , et al. Micro-motion signal enhancement method based on multi-resolution saliency filtering[J]. Systems Engineering and Eletronics, 2022, 44 (4): 1148- 1157.
|
4 |
ZHANG Y D, XIANG X, LI Y, et al. Enhanced micro-Doppler feature analysis for drone detection[C]//Proc. of the IEEE Radar Conference, 2021.
|
5 |
黄璟, 肖志河, 任红梅. 窄带相参雷达调制谱超分辨处理方法[J]. 系统工程与电子技术, 2010, 32 (9): 1894- 1897.
|
|
HUANG J , XIAO Z H , REN H M . Super-resolution processing of coherent narrowband radar for modulation spectrum[J]. Systems Engineering and Electronics, 2010, 32 (9): 1894- 1897.
|
6 |
RITCHIE M , FIORANELLI F . Multistatic micro-Doppler radar feature extraction for classification of unloaded/loaded micro-drones[J]. IET Radar, Sonar & Navigation, 2017, 11 (1): 116- 124.
|
7 |
CHEN Z X , LI G , FIORANELLI F , et al. Personnel recognition and gait classification based on multistatic micro-Doppler signatures using deep convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15 (5): 669- 673.
doi: 10.1109/LGRS.2018.2806940
|
8 |
章鹏飞, 李刚, 霍超颖, 等. 基于双雷达微动特征融合的无人机分类识别[J]. 雷达学报, 2018, 7 (5): 557- 564.
|
|
ZHANG P F , LI G , HUO C Y , et al. Classification of drones based on micro-Doppler radar signatures using dual radar sensors[J]. Journal of Radars, 2018, 7 (5): 557- 564.
|
9 |
CAI H , LIU B , XIAO Y S , et al. Semi-supervised multi-view clustering based on orthonormality-constrained nonnegative matrix factorization[J]. Information Sciences, 2020, 536 (10): 171- 184.
|
10 |
ELOSUA-BAYES M , NIETO P , MEREU E , et al. SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes[J]. Nucleic Acids Research, 2021, 49 (9): e50.
doi: 10.1093/nar/gkab043
|
11 |
LEPLAT V , GILLIS N , ANG A . Blind audio source separation with minimum-volume beta-divergence NMF[J]. IEEE Trans.on Signal Processing, 2020, 68, 3400- 3410.
doi: 10.1109/TSP.2020.2991801
|
12 |
LEE S , PANG H S . Feature extraction based on the non-negative matrix factorization of convolutional neural networks for monitoring domestic activity with acoustic signals[J]. IEEE Access, 2020, 8, 122384- 122395.
|
13 |
韦娟, 杨皇卫, 宁方立. 基于NMF与CNN联合优化的声学场景分类[J]. 系统工程与电子技术, 2022, 44 (5): 1433- 1438.
|
|
WEI J , YANG H W , NING F L . Acoustic scene classification based on joint optimization of NMF and CNN[J]. Systems Engineering and Electronics, 2022, 44 (5): 1433- 1438.
|
14 |
LEE D D , SEUNG H S . Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401 (6755): 788- 791.
|
15 |
LEE D D, SEUNG H S. Algorithms for non-negative matrix factorization[C]//Proc. of the Conference on Advances in Neural Information Processing Systems, 2001: 556-562.
|
16 |
LIN C J . Projected gradient methods for nonnegative matrix factorization[J]. Neural Computation, 2007, 19 (10): 2756- 2779.
|
17 |
CAI D, HE X F, WU X Y, et al. Non-negative matrix factori-zation on manifold[C]//Proc. of the 8th IEEE International Conference on Data Mining, 2008: 63-72.
|
18 |
LIU W X, ZHENG N N, LU X F. Non-negative matrix factori -zation for visual coding[C]//Proc. of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003, 3: 293-296.
|
19 |
HOYER P O . Nonnegative matrix factorization with sparseness constraints[J]. Journal of Machine Learning Research, 2004, 5 (9): 1457- 1469.
|
20 |
QIAN Y T , JIA S , ZHOU J , et al. Hyperspectral unmixing via L1/2 sparsity constrained nonnegative matrix factorization[J]. IEEE Trans.on Geoscience and Remote Sensing, 2011, 49 (11): 4282- 4297.
|
21 |
许然, 李亚超, 邢孟道. 利用稀疏非负矩阵分解的大转角SAR成像方法[J]. 西安电子科技大学学报, 2014, 41 (3): 49- 55.
|
|
XU R , LI Y C , XING M D . Wide angle SAR imaging via sparse non-negative matrix factorization[J]. Journal of Xidian University, 2014, 41 (3): 49- 55.
|
22 |
HUANG G B , ZHU Q Y , SIEW C K . Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70 (1/3): 489- 501.
|
23 |
WANG J , LU S Y , WANG S H , et al. A review on extreme learning machine[J]. Multimedia Tools and Applications, 2022, 81, 41611- 41660.
|
24 |
AFZA F , SHARIF M , KHAN M A , et al. Multiclass skin lesion classification using hybrid deep features selection and extreme learning machine[J]. Sensors, 2022, 22 (3): 799.
|
25 |
MANOHARAN J S . Study of variants of extreme learning machine (ELM) brands and its performance measure on classification algorithm[J]. Journal of Soft Computing Paradigm, 2021, 3 (2): 83- 95.
|
26 |
AL-DHIEF F T , BAKI M M , LATIFFL N , et al. Voice pathology detection and classification by adopting online sequential extreme learning machine[J]. IEEE Access, 2021, 9, 77293- 77306.
|
27 |
KHAN M A, KADRY S, PARWEKAR P, et al. Human gait analysis for osteoarthritis prediction: a framework of deep learning and kernel extreme learning machine[J/OL]. Complex & Intelligent Systems, 2021.http://link.springer.com/artide/10.1007/s40747-020-00244-2.[2022-08-11].
|
28 |
BHATTI Y K , JAMIL A , NIDA N , et al. Facial expression recognition of instructor using deep features and extreme learning machine[J]. Computational Intelligence and Neuroscience, 2021, 2021, 5570870.
|
29 |
HU T , KHISHE M , MOHAMMADI M , et al. Realtime COVID-19 diagnosis from X-Ray images using deep CNN and extreme learning machines stabilized by chimp optimization algorithm[J]. Biomedical Signal Processing and Control, 2021, 68, 102764.
|
30 |
NAHIDUZZAMAN M , GONI M O F , ANOWER M S , et al. A novel method for multivariant pneumonia classification based on hybrid CNN-PCA based feature extraction using extreme learning machine with CXR images[J]. IEEE Access, 2021, 9, 147512- 147526.
|
31 |
LADDADA S , SI-CHAIB M O , BENKEDJOUH T , et al. Tool wear condition monitoring based on wavelet transform and improved extreme learning machine[J]. Journal of Mechanical Engineering Science, 2020, 234 (5): 1057- 1068.
|
32 |
TSAO J , STEINBERG B D . Reduction of sidelobe and speckle artifacts in microwave imaging: the CLEAN technique[J]. IEEE Trans.on Antennas and Propagation, 1988, 36 (4): 543- 556.
|