系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (7): 2043-2050.doi: 10.12305/j.issn.1001-506X.2023.07.14

• 传感器与信号处理 • 上一篇    下一篇

气动目标多频点调制谱融合增强识别方法

赵庆媛, 赵志强, 叶春茂, 鲁耀兵   

  1. 北京无线电测量研究所, 北京 100854
  • 收稿日期:2022-08-11 出版日期:2023-06-30 发布日期:2023-07-11
  • 通讯作者: 叶春茂
  • 作者简介:赵庆媛 (1986—), 女, 高级工程师, 博士, 主要研究方向为雷达智能化应用、目标识别
    赵志强 (1992—), 男, 工程师, 硕士, 主要研究方向为雷达目标识别
    叶春茂 (1981—), 男, 研究员, 博士, 主要研究方向为雷达系统设计及应用技术
    鲁耀兵 (1965—), 男, 研究员, 博士, 主要研究方向为雷达系统总体设计、新体制雷达技术

Multi-frequency modulation spectrum fusion enhanced recognition method for pneumatic targets

Qingyuan ZHAO, Zhiqiang ZHAO, Chunmao YE, Yaobing LU   

  1. Beijing Institute of Radio Measurement, Beijing 100854, China
  • Received:2022-08-11 Online:2023-06-30 Published:2023-07-11
  • Contact: Chunmao YE

摘要:

预警雷达探测过程中气动目标微动回波能量弱导致识别性能不稳定。针对该问题, 提出一种基于稀疏约束非负矩阵分解(sparse constrained non-negative matrix factorization, SCNMF)和集成极限学习机(integrated extreme learning machine, IELM)的多频点调制谱融合增强识别方法。通过分析微动部件回波特性, 对多频点频域幅度谱进行SCNMF处理实现像素级融合得到特征增强后的稀疏调制谱, 并将其作为样本输入IELM, 实现气动目标类型识别。仿真和实测数据表明, 本文方法能够有效融合多频点微动特征, 具有抗噪能力强、所需训练样本少和识别性能稳健等优势。

关键词: 调制谱, 气动目标, 稀疏约束非负矩阵分解, 集成极限学习机

Abstract:

To solve the problem of unstable recognition performance caused by weak energy of aircraft fretting echo in early warning radar detection process, a multi-frequency modulation spectrum fusion and enhanced recognition method combining sparse constrained non-negative matrix factorization (SCNMF) and integrated extreme learning machine (IELM) is proposed.By analyzing the echo frequency domain characteristics of the micro-motion parts, SCNMF is performed on the modulation spectrum of multi-frequency to achieve pixel-level fusion and obtain the enhanced sparse modulation spectrum, which is input into IELM as a sample to achieve pneumatic target classification. Simulation and measured data verify that the proposed method can effectively integrate multi-frequency micro-motion features, and has the advantages of strong anti-noise ability, fewer training samples and robust recognition performance.

Key words: modulation spectrum, pneumatic target, sparse constrained non-negative matrix factorization, integrated extreme learning machine (IELM)

中图分类号: