系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (7): 2010-2021.doi: 10.12305/j.issn.1001-506X.2023.07.11
王湖升, 陈伯孝, 叶倾知
收稿日期:
2021-12-13
出版日期:
2023-06-30
发布日期:
2023-07-11
通讯作者:
陈伯孝
作者简介:
王湖升 (1997—), 男, 博士研究生, 主要研究方向为雷达抗干扰、强化学习、智能决策调度基金资助:
Husheng WANG, Baixiao CHEN, Qingzhi YE
Received:
2021-12-13
Online:
2023-06-30
Published:
2023-07-11
Contact:
Baixiao CHEN
摘要:
箔条干扰是一种典型的无源干扰措施, 其扩散过程复杂且特征信息多变, 现有的对抗方法无法兼顾准确率和普适性。针对这一问题, 基于距离-多普勒(range-Doppler, R-D)二维图的距离、频率分布特征, 提出了一种更为有效的抗箔条干扰方法。首先, 采用均值漂移聚类算法分离目标与箔条的点集。然后,提取频偏和等新的特征信息辅助机器学习分类器完成整个扩散过程的对抗识别。最后, 该方法被应用于某相参末制导雷达的大量抗箔条干扰实测数据。数据处理结果展示了箔条弹自打出到完全扩散整个过程中各干扰特征的变化情况, 在此基础上讨论了特征的稳定性和对抗方法的可靠性。理论分析和实测数据处理结果都表明所提抗箔条干扰方法在整个扩散过程中能够准确地辨识箔条, 因此所提方法抗干扰性能卓越、环境适应能力强。
中图分类号:
王湖升, 陈伯孝, 叶倾知. 基于箔条干扰实测数据的对抗方法研究[J]. 系统工程与电子技术, 2023, 45(7): 2010-2021.
Husheng WANG, Baixiao CHEN, Qingzhi YE. Research on anti-chaff jamming method based on measured data[J]. Systems Engineering and Electronics, 2023, 45(7): 2010-2021.
表2
第2发箔条弹扩散过程的主要特征"
类别 | 帧号 | 中心点距离/km | 中心点速度/(m/s) | 占据距离单元数 | 占据多普勒通道数 | 过CFAR门限点数 |
目标 | 1 426 | 20.69 | 4.21 | 3 | 12 | 43 |
1 527 | 20.44 | 4.58 | 15 | 14 | 104 | |
3 812 | 17.11 | 5.17 | 17 | 26 | 254 | |
5 428 | 14.62 | 5.83 | 31 | 25 | 134 | |
箔条1 | 1 426 | 20.65 | 0.26 | 21 | 36 | 307 |
1 527 | 20.41 | 0.48 | 18 | 31 | 177 | |
3 812 | 17.21 | 2.15 | 29 | 45 | 454 | |
5 428 | 14.86 | 2.38 | 39 | 54 | 620 | |
箔条2 | 1 426 | 21.14 | 0.48 | 27 | 15 | 48 |
1 527 | 20.84 | 0.55 | 28 | 18 | 94 | |
3 812 | 17.68 | 1.65 | 33 | 27 | 375 | |
5 428 | 15.32 | 2.08 | 45 | 51 | 466 |
1 | 尚炜, 陈伯孝, 蒋丽凤. 基于频谱展宽效应的一种抗箔条方法[J]. 制导与引信, 2006, 27 (3): 5-9, 24 |
SHANG W , CHEN B X , JIANG L F . An anti-chaff jamming method based on the effect of spectral expansion[J]. Guidance & Fuze, 2006, 27 (3): 5-9, 24 | |
2 | 陈静. 雷达箔条干扰原理[M]. 北京: 国防工业出版社, 2007. |
CHEN J . Principles of radar chaff jamming[M]. Beijing: National Defense Industry Publishing House, 2007. | |
3 | 李伟, 贾惠波, 顾启泰. 识别箔条干扰的一种实用方法[J]. 现代雷达, 2000, 22 (3): 37- 40. |
LI W , JIA H B , GU Q T . A practical method against chaff jamming for the radar[J]. Modern Radar, 2000, 22 (3): 37- 40. | |
4 | ZAK J, VACH M, DVORACEK F. Advanced chaff usage in modern EW[C]//Proc. of the IEEE Radar Methods and Systems Workshop, 2016: 56-59. |
5 | GILLES R . Chaff and flare overview[M]. London: BAE Systems, 2010. |
6 | ZHU G Q, MAN L, CHEN Y, et al. Approach of electromagnetic modeling for chaff clouds formed by exploding[C]//Proc. of the IEEE International Conference on Computational Electromagnetics, 2018. |
7 | ZAK J, GREGOR L, DVORACEK F, et al. Measurement of CHAFF RCS[C]//Proc. of the IEEE 19th International Radar Symposium, 2018: 1-7. |
8 | ZUO Y C, GUO L X, XIAO D H. The near-field scattering of chaff cloud[C]//Proc. of the IEEE Cross Strait Quad-Regional Radio Science and Wireless Technology Conference, 2018. |
9 | 马贤杰, 马榜, 李石川, 等. 直升机载箔条弹干扰效能分析[J]. 航天电子对抗, 2018, 34 (6): 17- 22. |
MA X J , MA B , LI S C , et al. Analysis of interference effectiveness of helicopter-borne chaff bombs[J]. Aerospace Electronic Warfare, 2018, 34 (6): 17- 22. | |
10 | GUO L X, ZUO Y C. Investigation on the electromagnetic scattering from the chaff cloud in airflow with VRT[C]//Proc. of the IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization, 2020. |
11 | YIN C, BO Y. An improved model for computing the scattering amplitude coefficient of the chaff cloud[C]//Proc. of the IEEE Workshop on Advanced Research and Technology in Industry Applications, 2014: 1371-1374. |
12 | ZHOU Z Y, LI J L, LIANG X X, et al. Polarization and frequency spectra characteristics of chaff cloud clutter signals[C]// Proc. of the IEEE International Conference on Computational Electromagnetics, 2019. |
13 | ZHANG L, WU Z. Simulation of full-polarization electromagnetic back-scattering characteristics of large number of high-density chaff clouds[C]//Proc. of the IEEE Cross Strait Quad-Regional Radio Science and Wireless Technology Conference, 2019. |
14 | CUI G, SHI L F, MA J, et al. Study on chaff diffusion and polarization stratification[C]//Proc. of the IEEE International Conference on Computational Electromagnetics, 2018. |
15 | 全斯农, 范晖, 代大海, 等. 一种基于精细极化目标分解的舰船箔条云识别方法[J]. 雷达学报, 2021, 10 (1): 61. |
QUAN S N , FAN H , DAI D H , et al. Recognition of ships and chaff clouds based on sophisticated polarimetric target decomposition[J]. Journal of Radars, 2021, 10 (1): 61. | |
16 |
李尚生, 付哲泉. 关于制导雷达目标识别抗箔条干扰仿真研究[J]. 计算机仿真, 2016, (5): 19- 22.
doi: 10.3969/j.issn.1006-9348.2016.05.005 |
LI S S , FU Z Q . Anti-chaff jamming method of target recognition for guidance radar based on frequency characteristics[J]. Computer Integrated Manufacturing, 2016, (5): 19- 22.
doi: 10.3969/j.issn.1006-9348.2016.05.005 |
|
17 | 李永祯, 刘业民, 庞晨, 等. 基于分层极化特性的箔条云识别方法研究[J]. 系统工程与电子技术, 2021, 43 (8): 2099- 2107. |
LI Y Z , LIU Y M , PANG C . Study on chaff clouds recognition method based on layered polarization characteristics[J]. Systems Engineering and Electronics, 2021, 43 (8): 2099- 2107. | |
18 | LEE H, KIM S. Fuzzy decision tree based Gentle Boost algorithm for detecting chaff echo in weather radar data[C]//Proc. of the IEEE 7th Joint International Conference on Soft Computing and Intelligent Systems and 15th International Symposium on Advanced Intelligent Systems, 2014: 1443-1448. |
19 | ZHANG L F, ZHEN S. Dynamic diffusion modeling and scattering characteristic of large number chaff clouds[C]//Proc. of the IEEE International Symposium on Antennas and Propagation, 2019. |
20 | LI R, HAO X, BAI S. The micro-Doppler features extraction of experimental data of chaff cloud scatter dispersion based on empirical mode decomposition[C]//Proc. of the IEEE International Conference on Signal, Information and Data Processing, 2019. |
21 | 赵海波, 胡光锐. 基于自适应联合时频处理的抗箔条干扰技术[J]. 上海交通大学学报, 2008, 42 (7): 1211- 1216. |
ZHAO H B , HU G R . Anti-cloud jamming method based on adaptive joint time-frequency processing[J]. Journal of Shanghai Jiaotong University, 2008, 42 (7): 1211- 1216. | |
22 | 舒欣, 沈福民. 时频分析技术在抑制箔条干扰中的应用[J]. 西安电子科技大学学报, 2001, 28 (5): 676- 680. |
SHU X , SHEN F M . The application of the time-frequency analysis[J]. Journal of Xidian University, 2001, 28 (5): 676- 680. | |
23 | LIU Y M , XING S Q , LIU Y C , et al. Maximum likelihood angle estimation of target in the presence of chaff centroid jamming[J]. IEEE Access, 2018, 6, 74416- 74428. |
24 | 刘业民, 邢世其, 李永祯, 等. 基于极化单脉冲雷达的角度估计方法[J]. 系统工程与电子技术, 2018, 40 (8): 50- 56. |
LIU Y M , XING S Q , LI Y Z , et al. Method for angle estimating based on polarization monopulse radar[J]. Systems Engineering and Electronics, 2018, 40 (8): 50- 56. | |
25 | 李金梁, 来庆福, 李永祯, 等. 基于极化对比增强的导引头抗箔条算法[J]. 系统工程与电子技术, 2011, 33 (2): 268- 271. |
LI J L , LAI Q F , LI Y Z , et al. Anti-chaff algorithm for seekers based on polarimetric contrast enhancement[J]. Systems Engineering and Electronics, 2011, 33 (2): 268- 271. | |
26 | ZUO Y C, GUO L X, LIU W. A scattering evaluation method of chaff cloud based on VRT and SVM[C]//Proc. of the IEEE Photonics & Electromagnetics Research Symposium-Fall, 2019: 1105-1108. |
27 | KAYDOK U. Chaff discrimination using convolutional neural networks and range profile data[C]//Proc. of the IEEE International Radar Conference, 2020: 373-377. |
28 | 刘世敏. 箔条干扰的特征及其实测数据分析[D]. 西安: 西安电子科技大学, 2009: 23-44. |
LIU S M. Characteristics of chaff interference and analysis of actual data[D]. Xi'an: Xidian University, 2009: 23-44. | |
29 | 刘博, 常文革. 反舰宽带相参雷达的一种抗箔条干扰方法[J]. 系统工程与电子技术, 2014, 34 (3): 38- 44. |
LIU B , CHANG W G . Effective anti-chaff jamming method for anti-ship wideband coherent radar[J]. Systems Engineering and Electronics, 2014, 34 (3): 38- 44. | |
30 | 曹司磊, 曾维贵, 刘明刚. 基于区域判别的抗质心式箔条干扰方法[J]. 兵工自动化, 2017, (6): 70- 74. |
CAO S L , ZENG W G , LIU M G . Centroid-chaff jamming confrontation based on region discrimination[J]. Ordnance Industry Automation, 2017, (6): 70- 74. | |
31 | 陈伯孝. 现代雷达系统分析与设计[M]. 西安: 西安电子科技大学出版社, 2012. |
CHEN B X . Modern radar system analysis and design[M]. Xi'an: Xidian University Press, 2012. | |
32 | WINKLER V. Range Doppler detection for automotive FMCW radars[C]//Proc. of the IEEE European Radar Conference, 2007: 166-169. |
33 | FUKUNAGA K , HOSTETLER L D . The estimation of the gradient of a density function, with applications in pattern recognition[J]. IEEE Trans.on Information, 1975, 21 (1): 32- 40. |
34 | CHENG Y Z . Mean shift, mode seeking, and clustering[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 1995, 17 (8): 790- 799. |
35 | 周芳芳, 樊晓平, 叶榛. 均值漂移算法的研究与应用[J]. 控制与决策, 2007, 22 (8): 841- 847. |
ZHOU F F , FAN X P , YE Z . Mean shift research and applications[J]. Control and Decision, 2007, 22 (8): 841- 847. | |
36 | JOANES D N , GILL C A . Comparing measures of sample skewness and kurtosis[J]. Journal of the Royal Statistical Society, 2010, 47 (1): 183- 189. |
[1] | 刘文波, 姚翼荣, 张弓, 胡文. 超维计算概念、应用及研究进展[J]. 系统工程与电子技术, 2023, 45(7): 1938-1956. |
[2] | 杨帆, 马萍, 李伟, 杨明. 基于孪生网络的仿真模型智能排序评估方法[J]. 系统工程与电子技术, 2023, 45(7): 2060-2068. |
[3] | 王哲昊, 简涛, 黄晓冬, 王海鹏, 刘瑜. 基于角域特征PSO的海面目标HRRP识别方法[J]. 系统工程与电子技术, 2023, 45(6): 1642-1650. |
[4] | 黄瀚仪, 胡仕友, 郭胜龙, 李珊君, 舒勤. 基于稀疏分解的海面微动目标识别[J]. 系统工程与电子技术, 2023, 45(4): 1016-1023. |
[5] | 赵庆媛, 赵志强, 叶春茂, 鲁耀兵. 基于自注意力的双波段预警雷达微动融合识别[J]. 系统工程与电子技术, 2023, 45(3): 708-716. |
[6] | 王彩云, 吴钇达, 王佳宁, 马璐, 赵焕玥. 基于改进的CNN和数据增强的SAR目标识别[J]. 系统工程与电子技术, 2022, 44(8): 2483-2487. |
[7] | 马泽煊, 李进, 路艳丽, 陈晨. 融合WaveNet和BiGRU的网络入侵检测方法[J]. 系统工程与电子技术, 2022, 44(8): 2652-2660. |
[8] | 李郝亮, 陈思伟, 王雪松. 海面角反射器的极化旋转域特性研究[J]. 系统工程与电子技术, 2022, 44(7): 2065-2073. |
[9] | 孙晶明, 虞盛康, 孙俊. 基于元学习的雷达小样本目标识别方法及改进[J]. 系统工程与电子技术, 2022, 44(6): 1839-1845. |
[10] | 周晓玲, 张朝霞, 鲁雅, 王倩, 王琨琨. 基于改进R-FCN的SAR图像识别[J]. 系统工程与电子技术, 2022, 44(4): 1202-1209. |
[11] | 孙晶明, 虞盛康, 孙俊. 基于深度学习的HRRP识别姿态敏感性分析[J]. 系统工程与电子技术, 2022, 44(3): 802-807. |
[12] | 王春政, 胡明华, 杨磊, 赵征. 空中交通延误预测研究综述[J]. 系统工程与电子技术, 2022, 44(3): 863-874. |
[13] | 张心宇, 刘源, 宋佳凝. 基于LSTM神经网络的短期轨道预报[J]. 系统工程与电子技术, 2022, 44(3): 939-947. |
[14] | 雷禹, 冷祥光, 周晓艳, 孙忠镇, 计科峰. 基于改进ResNet网络的复数SAR图像舰船目标识别方法[J]. 系统工程与电子技术, 2022, 44(12): 3652-3660. |
[15] | 刘旗, 张新禹, 刘永祥. 基于门控多尺度匹配网络的小样本SAR目标识别[J]. 系统工程与电子技术, 2022, 44(11): 3346-3356. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||