1 |
党彦锋, 梁毅, 张罡, 等. 机动平台俯冲大斜视SAR脉冲重复频率设计[J]. 系统工程与电子技术, 2020, 42 (3): 575- 581.
|
|
DANG Y F , LIANG Y , ZHANG G , et al. Pulse repetition frequency design for diving highly squinted synthetic aperture radar mounted on maneuvering platform[J]. Systems Engineering and Electronics, 2020, 42 (3): 575- 581.
|
2 |
孟自强, 李亚超, 胡奇, 等. 弹载双基前视SAR建模及运动/同步误差分析[J]. 系统工程与电子技术, 2015, 37 (3): 523- 531.
|
|
MENG Z Q , LI Y C , HU Q , et al. Modeling and motion/synchronization error analysis if MBFL-SAR[J]. Systems Engineering and Electronics, 2015, 37 (3): 523- 531.
|
3 |
梅海文, 李亚超, 邢孟道, 等. 机-弹双基前视SAR俯冲段轨迹设计方法[J]. 系统工程与电子技术, 2019, 41 (4): 752- 758.
|
|
MEI H W , LI Y C , XING M D , et al. Trajectory design method for the terminal diving period of AMBFL-SAR[J]. Systems Engineering and Electronics, 2019, 41 (4): 752- 758.
|
4 |
ZHANG Q H , WU J J , SONG Y , et al. Bistatic range Doppler aperture wave number algorithm for forward-looking spotlight SAR with stationary transmitter and maneuvering receiver[J]. IEEE Trans.on Geoscience and Remote Sensing, 2021, 59 (3): 2080- 2094.
doi: 10.1109/TGRS.2020.3004726
|
5 |
WU J J , PU W , HUANG Y L , et al. Bistatic forward-looking SAR focusing using based on spectrum modeling and optimization[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11 (11): 4500- 4512.
doi: 10.1109/JSTARS.2018.2873645
|
6 |
LIANG W , SU W M , GU H . Focusing high-resolution high forward-looking bistatic SAR with nonequal platform velocities based on Keystone transform and modified nonlinear Chirp scaling algorithm[J]. IEEE Sensors Journal, 2019, 19 (3): 901- 908.
doi: 10.1109/JSEN.2018.2877387
|
7 |
SHIN H , LIM J . Omega-k algorithm for airborne forward-look-ing bistatic spotlight SAR imaging[J]. IEEE Trans.on Geoscience and Remote Sensing Letters, 2009, 6 (2): 312- 316.
doi: 10.1109/LGRS.2008.2011924
|
8 |
DAI C Y , ZHANG X L . Omega-k algorithm for bistatic SAR with arbitrary geometry configuration[J]. Journal of Electromagnetic Waves and Applications, 2011, 25 (11-12): 1564- 1576.
doi: 10.1163/156939311797164972
|
9 |
DENG H , LI Y C , LIU M Q , et al. A space-variant phase filtering imaging algorithm for missile-borne biSAR with arbitrary configuration and curved track[J]. IEEE Sensors Journal, 2018, 18 (8): 3311- 3326.
doi: 10.1109/JSEN.2018.2809508
|
10 |
WU J J , LI Z Y , HUANG Y L , et al. Focusing bistatic forward-looking SAR with stationary transmitter based on Keystone transform and nonlinear chirp scaling[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11 (1): 148- 152.
doi: 10.1109/LGRS.2013.2250904
|
11 |
ZHANG H , TANG J W , WANG R . An accelerated back-projection algorithm for monostatic and bistatic SAR processing[J]. Remote Sensing, 2018, 10 (1): 140- 159.
doi: 10.3390/rs10010140
|
12 |
LUO Y , ZHAO F J , LI N , et al. An autofocus cartesian factorized back projection algorithm for spotlight synthetic aperture radar imaging[J]. IEEE Geoscience Remote Sensing Letters, 2018, 15 (8): 1244- 1248.
doi: 10.1109/LGRS.2018.2829483
|
13 |
DONG Q , SUN G C , YANG Z , et al. Cartesian factorized back projection algorithm for high-resolution spotlight SAR imaging[J]. IEEE Sensors Journal, 2018, 18 (3): 1160- 1168.
doi: 10.1109/JSEN.2017.2780164
|
14 |
NEO Y , WONG F H , CUMINMING I G . Processing of azimuth-invariant bistatic SAR data using the range doppler algorithm[J]. IEEE Trans.on Geoscience and Remote Sensing, 2008, 46 (1): 14- 21.
doi: 10.1109/TGRS.2007.909090
|
15 |
WONG F W , YEO T S . New application of non-linear chirp scaling in SAR data processing[J]. IEEE Trans.on Geoscience and Remote Sensing, 2001, 39 (5): 946- 953.
doi: 10.1109/36.921412
|
16 |
LIU G G , ZHANG L R , LIU X . General bistatic SAR data processing based on extended nonlinear chirp scaling[J]. IEEE Sensors Letters, 2013, 10 (5): 976- 980.
|
17 |
LI Y C , ZHANG T H , MEI H W , et al. Focusing translational- variant bistatic forward-looking SAR data using the modified omega-k algorithm[J]. IEEE Trans.on Geoscience and Remote Sensing, 2021, 60, 5203916.
|
18 |
李梦慧, 谭鸽伟, 杨晶晶, 等. 基于运动补偿和正交解耦合的双基SAR成像算法[J]. 信号处理, 2021, 37 (1): 75- 85.
|
|
LI M H , TAN G W , YANG J J , et al. An imaging algorithm for bistatic SAR based on the motion compensation and orthogonal decoupling[J]. Journal of Signal Processing, 2021, 37 (1): 75- 85.
|
19 |
MEI H W , MENG Z Q , LIU M Q , et al. Thorough understanding property for bistatic forward-looking high-speed maneuvering platform SAR[J]. IEEE Trans.on Geoscience and Remote Sensing, 2017, 53 (4): 1826- 1845.
|
20 |
MEI H W , LI Y C , XING M D , et al. A frequency-domain imaging algorithm for translational variant Bistatic forward-looking SAR[J]. IEEE Trans.on Geoscience and Remote Sensing, 2020, 58 (3): 1502- 1515.
|
21 |
WU J J , SUN Z C , LI Z Y , et al. Focusing translational variant bistatic forward-looking SAR using keystone transform and extended nonlinear chirp scaling[J]. Remote Sensing, 2016, 8 (10): 840.
|
22 |
CLEMENTE C , SORAGHAN J J . Approximation of the bistatic slant range using Chebyshev polynomials[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9 (4): 682- 686.
|
23 |
RAN L , XIE R , LIU Z , et al. Simultaneous range and cross- range variant phase error estimation and compensation for highly squinted SAR imaging[J]. IEEE Trans.on Geoscience and Remote Sensing, 2018, 56 (8): 4448- 4463.
|
24 |
王娟, 赵永波. Keystone变换实现方法研究[J]. 火控雷达技术, 2011, 40 (1): 45- 51.
|
|
WANG J , ZHAO Y B . Research on implementation of Keystone transform[J]. Fire Control Radar Technology, 2011, 40 (1): 45- 51.
|