1 |
GUO Z , WANG Z F , HAO Y H , et al. An improved coordinate registration for over-the-horizon radar using reference sources[J]. Electronics, 2021, 10 (24): 3086.
doi: 10.3390/electronics10243086
|
2 |
GUO Z , WANG Z F , LAN H , et al. OTHR multitarget tracking with a GMRF model of ionospheric parameters[J]. Signal Processing, 2021, 182, 107940.
doi: 10.1016/j.sigpro.2020.107940
|
3 |
SADEGHI M , BEHNIA F , AMIRI R , et al. Target localization geometry gain in distributed MIMO radar[J]. IEEE Trans.on Signal Processing, 2021, 69, 1642- 1652.
doi: 10.1109/TSP.2021.3062197
|
4 |
FRAZER G J , ABRAMOVICH Y I , JOHNSON B A . Multiple-input multiple-output over-the-horizon radar: experimental results[J]. IET Radar, Sonar & Navigation, 2009, 3 (4): 290- 303.
|
5 |
YU X , LU A A , GAO X , et al. HF skywave massive MIMO communication[J]. IEEE Trans.on Wireless Communications, 2021, 21 (4): 2769- 2785.
|
6 |
FRAZER G J . Experimental results for MIMO methods applied in over-the-horizon radar[J]. IEEE Aerospace and Electronic Systems Magazine, 2017, 32 (12): 52- 69.
doi: 10.1109/MAES.2017.170057
|
7 |
HAIMOVICH A M . MIMO radar with widely separated antennas[J]. IEEE Signal Processing Magazine, 2008, 25 (1): 116- 129.
doi: 10.1109/MSP.2008.4408448
|
8 |
TOMEI S , MARTORELLA M , COLEMAN C J , et al. Propagation effects on high frequency skywave multiple-input-multiple-output radar[J]. IET Radar, Sonar & Navigation, 2015, 9 (9): 1303- 1313.
|
9 |
GUO Y D , GONG J . Low observable group targets detection based on space-frequency cascaded adaptive processing for MIMO OTH radar[J]. Multidimensional Systems and Signal Processing, 2021, 32 (3): 1005- 1026.
doi: 10.1007/s11045-021-00767-y
|
10 |
YU W Q , CHEN J W , BAO Z . Multi-mode propagation mode loca-lisation and spread doppler clutter suppression method for multiple-input multiple-output over-the-horizon radar[J]. IET Radar, Sonar & Navigation, 2019, 13 (8): 1214- 1224.
|
11 |
FISHLER E , HAIMOVICH A , BLUM R S , et al. Spatial diversity in radars-models and detection performance[J]. IEEE Trans.on Signal Processing, 2006, 54 (3): 823- 838.
doi: 10.1109/TSP.2005.862813
|
12 |
REN F Y , GAO H T , YANG L J . Distributed multistatic sky-wave over-the-horizon radar based on the doppler frequency for marine target positioning[J]. Electronics, 2021, 10 (12): 1472.
doi: 10.3390/electronics10121472
|
13 |
KANG E W . Radar system analysis, design, and simulation[M]. Boston: Artech House, 2008.
|
14 |
王得旺. 双基地MIMO雷达系统设计与仿真研究[D]. 兰州: 兰州大学, 2015.
|
|
WANG D W. Research on bistatic MIMO radar system design and simulation[D]. Lanzhou: Lanzhou University, 2015.
|
15 |
杨守国, 李勇, 张昆辉, 等. MIMO雷达信号处理半实物仿真系统的设计与实现[J]. 现代雷达, 2017, 39 (4): 87- 91.
|
|
YANG S G , LI Y , ZHANG K H , et al. Design and implementation of semi-physical simulation system for MIMO radar signal processing[J]. Modern Radar, 2017, 39 (4): 87- 91.
|
16 |
LIU G G , YANG W B , LI P , et al. MIMO radar parallel simulation system based on CPU/GPU architecture[J]. Sensors, 2022, 22 (1): 396.
doi: 10.3390/s22010396
|
17 |
卢琨, 王永诚, 陈志坚. OTHR数据处理仿真系统的设计与实现[J]. 现代雷达, 2006, 28 (5): 27- 29.
|
|
LU K , WANG Y C , CHEN Z J . Design and implementation of data processing simulation system for skywave over-the-horizon radar[J]. Modern Radar, 2006, 28 (5): 27- 29.
|
18 |
CUCCOLI F, FACHERIS L, GIULI D, et al. Over the horizon sky-wave radar: simulation tool for coordinate registration method based on sea-land transitions identification[C]//Proc. of the IEEE European Radar Conference, 2009: 208-211.
|
19 |
SAAVEDRA Z , ZIMMERMAN D , CABRERA M A , et al. Sky-wave over-the-horizon radar simulation tool[J]. IET Radar, Sonar & Navigation, 2020, 14 (11): 1773- 1777.
|
20 |
CERVERA M A , HARRIS T J , HOLDSWORTH D A , et al. Ionospheric effects on HF radio wave propagation[J]. Ionosphere Dynamics and Applications, 2021, 19, 439- 492.
|
21 |
周文瑜, 焦培南. 超视距雷达技术[M]. 北京: 电子工业出版社, 2008.
|
|
ZHOU W Y , JIAO P N . Over-the-horizon radar technology[M]. Beijing: Publishing House of Electronics Industry, 2008.
|
22 |
DYSON P L , BENNETT J A . A model of the vertical distribution of the electron concentration in the ionosphere and its application to oblique propagation studies[J]. Journal of Atmospheric and Terrestrial Physics, 1988, 50 (3): 251- 262.
doi: 10.1016/0021-9169(88)90074-8
|
23 |
CROFT T A , HOOGASIAN H . Exact ray calculations in a quasi-parabolic ionosphere with no magnetic field[J]. Radio Science, 1968, 3 (1): 69- 74.
doi: 10.1002/rds19683169
|
24 |
LI J , STOICA P . MIMO radar signal processing[M]. New York: Wiley, 2009.
|
25 |
ZHAO C Y, KE W, WANG T T. Multi-target localization using distributed MIMO radar based on spatial sparsity[C]//Proc. of the IEEE International Conference on Artificial Intelligence and Computer Applications, 2021: 591-595.
|
26 |
ZHANG S , AHMED A , ZHANG Y D , et al. Enhanced DOA estimation exploiting multi-frequency sparse array[J]. IEEE Trans.on Signal Processing, 2021, 69, 5935- 5946.
doi: 10.1109/TSP.2021.3122292
|
27 |
LI H , WANG F , ZENG C , et al. Signal detection in distributed MIMO radar with non-orthogonal waveforms and sync errors[J]. IEEE Trans.on Signal Processing, 2021, 69, 3671- 3684.
doi: 10.1109/TSP.2021.3087897
|
28 |
SERAFINO G , MARESCA S , DI M L , et al. A photonics-assisted multi-band MIMO radar network for the port of the future[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27 (6): 1- 13.
|
29 |
PULFORD G W, LOGOTHETIS A, EVANS R. Integrated multipath track initiation for over-the-horizon radar: 3rd report to telecom australia[R]. Melbourne: CSSIP Report, 1995.
|
30 |
鲁耀兵, 高红卫. 分布孔径雷达[M]. 北京: 国防工业出版社, 2017.
|
|
LU Y B , GAO H W . Distributed aperture radar[M]. Beijing: National Defense Industry Press, 2017.
|
31 |
RICHARDS M A . Fundamentals of radar signal processing[M]. New York: McGraw-Hill Education, 2014.
|
32 |
YANG Y C , ZHANG T X , YI W , et al. Deployment of multistatic radar system using multi-objective particle swarm optimisation[J]. IET Radar, Sonar & Navigation, 2018, 12 (5): 485- 493.
|