系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (7): 1920-1927.doi: 10.12305/j.issn.1001-506X.2023.07.02

• 电子技术 • 上一篇    下一篇

杂波环境下基于最大熵模糊聚类的JPDA算法

毕文豪1,*, 周杰2, 张安1, 刘力1   

  1. 1. 西北工业大学航空学院, 陕西 西安 710072
    2. 南京电子技术研究所, 江苏 南京 210039
  • 收稿日期:2022-04-11 出版日期:2023-06-30 发布日期:2023-07-11
  • 通讯作者: 毕文豪
  • 作者简介:毕文豪(1986—), 男, 副研究员, 博士, 主要研究方向为智能火控、信息融合
    周杰(1996—), 男, 硕士, 主要研究方向为雷达多目标跟踪
    张安(1962—), 男, 教授, 博士, 主要研究方向为一体化智能火力指挥与控制技术、一体化作战飞机航空平台电子综合技术
    刘力(1997—), 男, 博士研究生, 主要研究方向为目标跟踪、信息融合
  • 基金资助:
    国家自然科学基金(61903305);国家自然科学基金(62073267);航空科学基金(201905053001)

JPDA algorithm based on maximum entropy fuzzy clustering in clutter environment

Wenhao BI1,*, Jie ZHOU2, An ZHANG1, Li LIU1   

  1. 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
    2. Nanjing Institute of Electronic Technology, Nanjing 210039, China
  • Received:2022-04-11 Online:2023-06-30 Published:2023-07-11
  • Contact: Wenhao BI

摘要:

针对杂波环境下的多目标跟踪数据关联存在跟踪精度低、实时性差的问题, 提出了一种基于最大熵模糊聚类的联合概率数据关联算法(joint probabilistic data association algorithm based on maximum entropy fuzzy clustering, MEFC-JPDA)。首先, 采用最大熵模糊聚类求得的隶属度初步表征目标与有效量测之间的关联概率。其次, 采用基于目标距离的量测修正因子对关联概率进行调整, 并建立关联概率矩阵。最后, 结合卡尔曼滤波算法, 对目标的状态进行加权更新。仿真结果表明, 所提算法在杂波环境下的跟踪性能相比现有的两种关联算法有较大提升, 是一种有效的多目标跟踪数据关联算法。

关键词: 多目标跟踪, 联合概率数据关联, 最大熵模糊聚类, 量测修正因子

Abstract:

Aiming at the problems of low tracking accuracy and poor real-time performance of multi-target tracking data association in clutter environment, this paper proposes a joint probabilistic data association algorithm based on maximum entropy fuzzy clustering (MEFC-JPDA). Firstly, the membership obtained by the maximum entropy fuzzy clustering is used to preliminarily characterize the correlation probability between the target and the effective measurement. Secondly, the measurement correction factor based on target distance is used to adjust the correlation probability, and the correlation probability matrix is established. Finally, combined with the Kalman filtering algorithm, the state of the target is weighted updated. Simulation results show that the tracking performance of the proposed algorithm in clutter environment is greatly improved compared with the existing two association algorithms, and it is an effective multi-target tracking data association algorithm.

Key words: multi-target tracking, joint probability data association (JPDA), maximum entropy fuzzy clustering (MEFC), measurement correction factor

中图分类号: