系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (6): 1828-1835.doi: 10.12305/j.issn.1001-506X.2023.06.27

• 制导、导航与控制 • 上一篇    

基于几何约束孪生卷积网络的相机6DOF定位研究

董思强, 邓年茂   

  1. 北京控制与电子技术研究所, 北京 100038
  • 收稿日期:2022-01-17 出版日期:2023-05-25 发布日期:2023-06-01
  • 通讯作者: 董思强
  • 作者简介:董思强 (1981—), 男, 高级工程师, 博士研究生, 主要研究方向为视觉导航、深度学习、制导与控制
    邓年茂 (1963—), 男, 研究员, 博士, 主要研究方向为视觉导航、制导与控制、光电技术

6DOF camera location research based on geometric constraint Siamese convolution network

Siqiang DONG, Nianmao DENG   

  1. Beijing Institute of Control and Electronic Technology, Beijing 100038, China
  • Received:2022-01-17 Online:2023-05-25 Published:2023-06-01
  • Contact: Siqiang DONG

摘要:

视觉定位技术是视觉导航和自动驾驶领域的重要组成部分。提出一种基于几何约束孪生卷积网络的相机六自由度(6 degree of freedom, 6DOF)定位方法, 采用卷积网络、以学习查询图像与参考图像之间相对位姿关系的几何约束方式, 获得查询图像的绝对位姿; 并使用性能优异的主干特征提取网络, 以及多任务联合损失函数同时训练的策略, 进一步提高方法的定位精度、稳定性以及泛化能力。同时, 设计了特征距离度量损失函数, 增强了对于相似图像的区分性。在室内及室外公开数据集上的验证数据表明, 与同类型方法相比,所提方法更具竞争力。

关键词: 相机定位, 孪生卷积网络, 相对位姿, 泛化能力, 定位精度

Abstract:

Visual localization technique is an important component in the field of visual navigation and autonomous driving. A camera 6 degree of freedom(6DOF) localization method based on geometrically constrained Siamese convolutional networks is proposed, which uses a geometrically constrained way for the convolutional network to learn the relative positional relationship between the query image and the reference image to obtain the global position of the query image. Meanwhile, this method uses a high-performing backbone feature extraction network and a multi-task joint loss function training strategy simultaneously to further improve the localization accuracy, stability, and generalization of the proposed method. The feature distance metric loss function is also designed to enhance the differentiation of similar images. The validation data on indoor and outdoor public datasets show that the proposed method is more competitive when it is compared with similar methods.

Key words: camera location, Siamese convolutional network, relative pose, generalization capability, pose accuracy

中图分类号: