1 |
MURILLOA C, KOSECKA J. Experiments in place recognition using gist panoramas[C]//Proc. of the IEEE 12th International Conference on Computer Vision Workshops, 2010.
|
2 |
SATTLER T, WEYAND T, LEIBE B, et al. Image retrieval for image-based localization revisited[C]//Proc. of the British Machine Vision Conference, 2012.
|
3 |
ULRICH I, NOURBAKHSH I. Appearance-based place recognition for topological localization[C]// Proc. of the IEEE International Conference on Robotics and Automation, 2000: 1023-1029.
|
4 |
WOLF J , BURGARD W , BURKHARDT H . Robust vision-based localization by combining an image-retrieval system with Monte Carlo localization[J]. IEEE Trans.on Robotics and Automation, 2005, 21 (2): 208- 216.
doi: 10.1109/TRO.2004.835453
|
5 |
KUBELOVA Z, BUJNAK M, PAJDLA T. Real-time solution to the absolute pose problem with unknown radial distortion and focal length[C]//Proc. of the IEEE International Conference on Computer Vision, 2013: 2816-2823.
|
6 |
BRAHMBHAAT S, GU J, KIM K, et al. Geometry-aware learning of maps for camera localization[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 2616-2625.
|
7 |
NILWONG S , HOSSAIN D , KANEKO S , et al. Deep learning-based landmark detection for mobile robot outdoor localization[J]. Machines, 2019, 7 (2): 25.
doi: 10.3390/machines7020025
|
8 |
KENDALL A, GRIMES M, CIPOLLA R. PoseNet: convolutional network for real-time 6-DOF camera relocalization[C]//Proc. of the IEEE International Conference on Computer Vision, 2015: 2938-2946.
|
9 |
SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2015.
|
10 |
PIASCO N, SIDIBE D, DEMONCEAUX C, et al. Geometric camera pose refinement with learned depth maps[C]//Proc. of the IEEE International Conference on Image Processing, 2019.
|
11 |
LI Q , ZHU J S , CAO R , et al. Relative geometry-aware Siamese neural network for 6DOF camera relocalization[J]. Neurocomputing, 2021, 426, 134- 146.
doi: 10.1016/j.neucom.2020.09.071
|
12 |
BOCHKOVSKIY A, WANG C Y, LIAO H. YOLOv4: optimal speed and accuracy of object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2020: 2930-2937.
|
13 |
VALADA A, RADWAN N, BURGARD W. Deep auxiliary learning for visual localization and odometry[C]// Proc. of the IEEE International Conference on Robotics and Automation, 2008.
|
14 |
RADWAN N , VALADA A , BURGARD W . VLocNet++: deep multitask learningfor semantic visual localization and odometry[J]. IEEE Robotics and Automation Letters, 2018, 3 (4): 4407- 4414.
doi: 10.1109/LRA.2018.2869640
|
15 |
DONOSER M, SCHMALSTIEG D. Discriminative feature-to-point matching in image-based localization[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 516-523.
|
16 |
SATTLER T, HAVLENA M, RADENOVIC F, et al. Hyper points and fine vocabularies for large-scale location recognition[C]// Proc. of the IEEE International Conference on Computer Vision, 2015: 2102-2110.
|
17 |
SATTLER T , LEIBE B , KOBBELT L . Efficient & effective prioritized matching for large-scale image-based localization[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2017, 39 (9): 1744- 1756.
doi: 10.1109/TPAMI.2016.2611662
|
18 |
LIM H, SINHA S, COHEN M, et al. Real-time imagebased 6-DOF localization in large-scale environments[C]//Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2012: 1043-1050.
|
19 |
RUBLEE E, RABAUD V, KONOLIGE K, et al. Orb: an efficient alternative to sift or surf[C]//Proc. of the IEEE International Conference on Computer Vision, 2011: 2564-2571.
|
20 |
KENDALL A, CIPOLLA R. Modelling uncertainty in deep learning for camera relocalization[C]//Proc. of the IEEE International conference on Robotics and Automation, 2016: 4762-4769.
|
21 |
MELEKHOV I, YLIOINAS J, KANNALA J, et al. Image-based localization using hourglass networks[C]// Proc. of the IEEE International Conference on Computer Vision, 2017: 879-886.
|
22 |
CLARK R, WANG S, MARKHAM A, et al. Vidloc: a deep spatio-temporal model for 6-DOF video-clip relocalization[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
|
23 |
BROMLEY J , BENTZ JW , BOTTOU L , et al. Signature verification using a "Siamese" time delay neural network[J]. International Journal of Pattern Recognition and Artificial Intelligence, 1993, 7 (4): 669- 688.
doi: 10.1142/S0218001493000339
|
24 |
WANG C Y, LIAO H, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020.
|
25 |
SRIVASTAVA N , HINTON G E , KRIZHEVSKY A , et al. Dropout: a simple way to prevent neural networks from over-fitting[J]. Journal of Robotics & Machine Learning, 2014, 15 (1): 1929- 1958.
|
26 |
KENDALL A, CIPOLLA R. Geometric loss functions for camera pose regression with deep learning[C]// Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
|
27 |
SCHROFF F, KALENICHENKO D, PHILBIN J. Facenet: A unified embedding for face recognition and clustering[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 815-823.
|
28 |
BELLET A, HABRARD A, SEBBAN M. A survey on metric learning for feature vectors and structured data[EB/OL]. [2022-01-10]. https://arxiv.org/abs/1306.6709.
|
29 |
RUSSAKOVSKY O , DENG J , SU H , et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115 (3): 211- 252.
|
30 |
SHOTTON B, GLOCKER C, ZACH S, et al. Scene coordinate regression forests for camera relocalization in RGB-D images[C]// Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2013: 2930-2937.
|
31 |
NEWCOMBE R A, IZADI S, HILLIGES O, et al. Kinectfusion: real-time dense surface mapping and tracking[C]//Proc. of the IEEE International Symposium on Mixed and Augmented Reality, 2011: 127-136.
|
32 |
WEYAND T, KOSTRIKOV I, PHILBIN J. PlaNet-photo geo-location with convolutional neural networks[C]//Proc. of the European Conference on Computer Vision, 2016: 37-55.
|