系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (6): 1732-1742.doi: 10.12305/j.issn.1001-506X.2023.06.17
• 系统工程 • 上一篇
秦长江1,2, 吴克宇1,*, 成清1, 黄金才1
收稿日期:
2022-01-13
出版日期:
2023-05-25
发布日期:
2023-06-01
通讯作者:
吴克宇
作者简介:
秦长江(1982—), 男, 讲师, 博士研究生, 主要研究方向为复杂网络、作战体系构建与分析Changjiang QIN1,2, Keyu WU1,*, Qing CHENG1, Jincai HUANG1
Received:
2022-01-13
Online:
2023-05-25
Published:
2023-06-01
Contact:
Keyu WU
摘要:
针对当前作战体系节点重要度评估存在的节点功能异质性及多样性刻画、体系模型动态性构建、体系作战能力计算等研究不够充分的问题, 建立了面向动态作战体系的杀伤网能力模型, 提出了杀伤网能力动态计算模型方法和搜索算法。考虑杀伤链的数量和质量, 提出了杀伤网能力指数和基于杀伤网能力指数贡献率的节点重要度评估模型。在仿真模拟实验中, 对比了不同时空状态下, 按杀伤网能力指数、度中心性等7种攻击方式对网络进行打击后的杀伤网能力指数的下降程度。仿真结果显示,所提方法明显优于其他基准方法, 验证了所提算法的合理性。
中图分类号:
秦长江, 吴克宇, 成清, 黄金才. 基于杀伤网贡献率的动态体系节点重要度评估[J]. 系统工程与电子技术, 2023, 45(6): 1732-1742.
Changjiang QIN, Keyu WU, Qing CHENG, Jincai HUANG. Node importance evaluation in dynamic system based on kill-web contribution rate[J]. Systems Engineering and Electronics, 2023, 45(6): 1732-1742.
表1
功能能力属性(1)"
ID | 通信手段及距离/km | ||||
Ncap1 | Ncap2 | Ncap3 | Ncap4 | Ncap5 | |
1 | 185 | 185 | 555 | 14 816 | 1 111 |
2 | 185 | 185 | 555 | - | 1 111 |
3 | 185 | 185 | 555 | - | 1 111 |
4 | 185 | 185 | 555 | 14 816 | 1 111 |
5 | 185 | 185 | 555 | 14 816 | 1 111 |
6 | 185 | 185 | 555 | 14 816 | 1 111 |
7 | 185 | 185 | 555 | 14 816 | 1 111 |
8 | 185 | 185 | 555 | 14 816 | 1 111 |
9 | - | - | - | - | 1 111 |
10 | 185 | 185 | 555 | 14 816 | 1 111 |
11 | 185 | 185 | 555 | - | 1 111 |
12 | - | - | - | - | 1 111 |
表3
时空1位置坐标"
ID | TSTime 05:07:04:20:00 (m: d: h: min: s) | TSLat/(°) | TSLon/(°) | TSAlt/km |
1 | 1 | 13.542 607 | 113.734 753 | 0 |
2 | 1 | 13.980 762 | 109.745 932 | 0 |
3 | 1 | 14.049 099 | 109.146 813 | 0 |
4 | 1 | 13.952 474 | 110.994 172 | 0 |
5 | 1 | 11.614 202 | 109.363 797 | 0 |
6 | 1 | 11.146 998 | 110.920 817 | 0 |
7 | 1 | 14.456 138 | 111.836 479 | 0 |
8 | 1 | 13.726 381 | 109.820 160 | 0 |
9 | 1 | 12.655 431 | 114.420 555 | 3 |
10 | 1 | 13.402 329 | 114.355 677 | 0 |
11 | 1 | - | - | - |
12 | 1 | - | - | - |
13 | 1 | 13.910 670 | 108.710 698 | 0 |
14 | 1 | 11.878 581 | 114.288 178 | 0 |
15 | 1 | 12.758 358 | 112.170 976 | 0 |
16 | 1 | 14.733 458 | 110.348 508 | 0 |
17 | 1 | 11.900 482 | 108.962 016 | 0 |
18 | 1 | 14.760 654 | 110.981 743 | 0 |
表4
时空2位置坐标"
ID | TSTime 05:07:04:30:00 (m: d: h: min: s) | TSLat/(°) | TSLon/(°) | TSAlt/km |
1 | 2 | 11.610 458 | 118.203 294 | 0 |
2 | 2 | 11.337 081 | 121.872 885 | 0 |
3 | 2 | 12.995 028 | 119.078 829 | 0 |
4 | 2 | 14.553 383 | 116.935 968 | 0 |
5 | 2 | 14.085 448 | 109.789 128 | 0 |
6 | 2 | 13.933 100 | 119.096 404 | 0 |
7 | 2 | 13.797 684 | 117.558 210 | 0 |
8 | 2 | 12.237 160 | 113.191 371 | 0 |
9 | 2 | 12.465 240 | 115.931 316 | 3.7 |
10 | 2 | 14.417 057 | 115.672 591 | 0 |
11 | 2 | - | - | - |
12 | 2 | - | - | - |
13 | 2 | 12.407 351 | 112.712 802 | 0 |
14 | 2 | 13.409 041 | 115.306 136 | 0 |
15 | 2 | 12.669 692 | 115.149 238 | 0 |
16 | 2 | 14.334 506 | 117.682 938 | 0 |
17 | 2 | 12.170 132 | 117.203 622 | 0 |
18 | 2 | 14.367 496 | 116.141 945 | 0 |
表5
时空3位置坐标"
ID | TSTime 05:07:04:40:00 (m: d: h: min: s) | TSLat/(°) | TSLon/(°) | TSAlt/km | |
1 | 3 | 12.790 145 | 110.790 819 | 0 | |
2 | 3 | 13.960 196 | 110.717 828 | 0 | |
3 | 3 | 15.791 066 | 121.548 277 | 0 | |
4 | 3 | 11.115 439 | 109.713 689 | 0 | |
5 | 3 | 11.523 498 | 109.765 455 | 0 | |
6 | 3 | 13.823 695 | 115.841 502 | 0 | |
7 | 3 | 11.245 976 | 116.896 690 | 0 | |
8 | 3 | 16.337 942 | 118.358 703 | 0 | |
9 | 3 | 16.132 825 | 116.149 067 | 3.30 | |
10 | 3 | 15.136 830 | 110.804 571 | 0 | |
11 | 3 | 13.684 155 | 114.270 466 | 0 | |
12 | 3 | 13.699 130 | 114.175 680 | 3.96 | |
13 | 3 | 11.944 040 | 120.855 720 | 0 | |
14 | 3 | 16.334 405 | 109.932 755 | 0 | |
15 | 3 | 17.569 961 | 117.329 119 | 0 | |
16 | 3 | 13.000 217 | 108.049 309 | 0 | |
17 | 3 | 13.722 591 | 110.225 195 | 0 | |
18 | 3 | 11.456 357 | 110.925 393 | 0 |
1 | GREGORY S M. Time critical targeting: predictive Vs. reactionary methods-an analysis for the future[D]. Alabama: Air University, 2002. |
2 | BRYAN C D P , HARRISON S . Mosaic warfare: exploiting artificial intelligence and autonomous systems to implement decision centric operations[J]. Washington: Center for Strategy and Budgetary Assessments, 2020, 32- 41. |
3 | FREEMAN L C . A set of measures of centrality based on betweenness[J]. Ciometry, 1977, 40 (1): 35- 41. |
4 | FREEMAN L C . Centrality in social networks conceptual clarification[J]. Social Networks, 1979, 1 (3): 215- 239. |
5 |
ALBERT R , JEONG H , BARABÁSI A L . Internet: diameter of the world-wide web[J]. Nature, 1999, 401 (6749): 130- 131.
doi: 10.1038/43601 |
6 |
LOHMANN G , MARGULIES D S , HORSTMANN A , et al. Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain[J]. PLoS One, 2010, 5 (4): e10232.
doi: 10.1371/journal.pone.0010232 |
7 | BRIN S , PAGE L . The anatomy of a large-scale hypertextual web search engine[J]. Computer Networks and ISDN Systems, 1998, 30 (1): 107- 117. |
8 | SHENG J F , J DAI J Y , WANG B , et al. Identifying influential nodes in complex networks based on global and local structure[J]. Physica A: Statistical Mechanics and its Applications, 2020, 541, 122481. |
9 |
QIU L Q , ZHANG J Y , TIAN X B . Ranking influential nodes in complex networks based on local and global structures[J]. Applied Intelligence, 2021, 51 (7): 4394- 4407.
doi: 10.1007/s10489-020-02132-1 |
10 | XU G Q , MENG L , TU D Q , et al. LCH: a local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks[J]. Chinese Physics B, 2021, 30 (8): 566- 574. |
11 | 姜志鹏, 张多林, 王乐, 等. 多维约束下指挥网络节点重要度的评估方法[J]. 解放军理工大学学报(自然科学版), 2015, 16 (3): 294- 298. |
JIANG Z P , ZHANG D L , WANG L , et al. Evaluation method for node importance of command network with multiple constraints[J]. Journal of PLA University of Science and Techno-logy (Natural Science Edition), 2015, 16 (3): 294- 298. | |
12 |
YANG G L , ZHANG W M , XIU B X , et al. Key potential-oriented criticality analysis for complex military organization based on FINC-E model[J]. Computational and Mathematical Organization Theory, 2014, 20 (3): 278- 301.
doi: 10.1007/s10588-013-9163-0 |
13 | GAO X , LI K Q , CHEN B . Invulnerability measure of a military heterogeneous network based on network structure entropy[J]. IEEE Access, 2017, 6, 6700- 6708. |
14 | 张明梅. 基于功能链的陆军师级武器装备体系作战能力评估[D]. 长沙: 国防科技大学, 2014. |
ZHANG M M. Evaluation of operational capability of land force's weapon equipment system of systems based on function chain[D]. Changsha: National University of Defense Techno-logy, 2014. | |
15 | 罗金亮, 金家才, 王雷. 基于功能贡献度的网络化防空节点重要性评价方法[J]. 计算机科学, 2018, 45 (2): 175- 180.175-180, 202 |
LUO J L , JIN J C , WANG L . Evaluation method for node importance in air defense networks based on functional contribution degree[J]. Computer Science, 2018, 45 (2): 175- 180.175-180, 202 | |
16 | 李清韦, 刘俊先, 陈涛. 基于活动环路的作战网络节点重要度评估方法[J]. 火力与指挥控制, 2019, 44 (8): 12- 16. |
LI Q W , LIU J X , CHEN T . Method for node importance evaluation in operational network based on active loop[J]. Fire Control & Command Control, 2019, 44 (8): 12- 16. | |
17 |
LI J C , JIANG J , YANG KW , et al. Research on functional robustness of heterogeneous combat networks[J]. IEEE Systems Journal, 2019, 13 (2): 1487- 1495.
doi: 10.1109/JSYST.2018.2828779 |
18 |
LI J C , ZHAO D L , JIANG J , et al. Capability oriented equipment contribution analysis in temporal combat networks[J]. IEEE Trans.on Systems, Man, and Cybernetics: Systems, 2021, 51 (2): 696- 704.
doi: 10.1109/TSMC.2018.2882782 |
19 |
LI J C , ZHAO D L , GE B F , et al. Disintegration of operational capability of heterogeneous combat networks under incomplete information[J]. IEEE Trans.on Systems, Man, and Cybernetics: Systems, 2020, 50 (12): 5172- 5179.
doi: 10.1109/TSMC.2018.2867532 |
20 | 李尔玉, 龚建兴, 黄健. 基于功能链的融合网络功能抗毁性评估[J]. 兵工学报, 2019, 40 (7): 1450- 1459. |
LI E Y , GONG J X , HUANG J . Analysis about functional invulnerability of convergent network based on function chain[J]. Acta Armamentarii, 2019, 40 (7): 1450- 1459. | |
21 | 杨迎辉, 李建华, 沈迪, 等. 多重边融合复杂网络动态演化模型[J]. 西安交通大学学报, 2016, 50 (9): 132- 139. |
YANG Y H , LI J H , SHEN D , et al. Dynamic evolution model of united complex networks with multi-links[J]. Journal of Xi'an Jiao Tong University, 2016, 50 (9): 132- 139. | |
22 | 朱涛, 梁维泰, 黄松华, 等. 面向任务的网络信息体系建模分析方法研究[J]. 系统仿真学报, 2020, 32 (4): 727- 737. |
ZHU T , LIANG W T , HUANG S H , et al. Research on modeling and analyzing method of task-oriented network information system of systems[J]. Journal of System Simulation, 2020, 32 (4): 727- 737. | |
23 | DEKKER A . Applying social network analysis concepts to military C4ISR architectures[J]. Connections, 2002, 24 (3): 93- 103. |
24 | 夏博远, 杨克巍, 杨志伟, 等. 基于杀伤网评估的装备组合多目标优化[J]. 系统工程与电子技术, 2021, 43 (2): 399- 409. |
XIA B Y , YANG K W , YANG Z W , et al. Multi-objective optimization of equipment portfolio based on kill-web evaluation[J]. Systems Engineering and Electronics, 2021, 43 (2): 399- 409. | |
25 |
QIN C , LIANG Y , HUANG J , et al. Node capability depen-dency importance evaluation of heterogeneous target operational network[J]. Evolutionary Intelligence, 2022,
doi: 10.1007/s12065-022-00712-3 |
26 | 王茂桓, 刘泽苁, 梁浩哲, 等. 多类型体系贡献率评估的综合问题研究[J]. 系统工程与电子技术, 2022, 44 (5): 1572- 1580. |
WANG M H , LIU Z C , LIANG H Z , et al. Research on comprehensive problem of evaluating multi-type contribution rate to system-of-systems[J]. Systems Engineering and Electronics, 2022, 44 (5): 1572- 1580. | |
27 | 周琛, 宋笔锋, 尚柏林, 等. 基于作战网络可靠度的体系贡献率评估[J]. 系统工程与电子技术, 2021, 43 (7): 1875- 1883. |
ZHOU C , SONG B F , SHANG B L , et al. System of systems contribution rate evaluation based on operational network reliability[J]. Systems Engineering and Electronics, 2021, 43 (7): 1875- 1883. | |
28 | 周琛, 尚柏林, 宋笔锋, 等. 基于作战环的航空武器装备体系贡献率评估[J]. 航空学报, 2022, 43 (2): 224958. |
ZHOU C , SHANG B L , SONG B F , et al. Contribution evaluation of aviation armament system-of-systems based on operation loop[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43 (2): 224958. | |
29 | 张大信, 王超, 郭基联, 等. 基于结构和功能的改进CRITIC体系贡献率评估方法[J]. 火力与指挥控制, 2021, 46 (6): 39- 46. |
ZHANG D X , WANG C , GUO J L , et al. Improved evaluation method of contribution ratio of CRITIC system based on structure and function[J]. Fire Control & Command Control, 2021, 46 (6): 39- 46. | |
30 | 周璇, 何锋, 谷晓燕, 等. 航电系统体系贡献率权重演化动态综合评估[J]. 系统工程与电子技术, 2020, 42 (8): 1740- 1750. |
ZHOU X , HE F , GU X Y , et al. Dynamic comprehensive evaluation with weight evolution for system contribution rate of avionics systems[J]. Systems Engineering and Electronics, 2020, 42 (8): 1740- 1750. | |
31 | 张先超, 马亚辉. 体系能力模型与装备体系贡献率测度方法[J]. 系统工程与电子技术, 2019, 41 (4): 843- 849. |
ZHANG X C , MA Y H . Capability model of combat system of systems and measurement method of armament contribution to combat system of systems[J]. Systems Engineering and Electronics, 2019, 41 (4): 843- 849. |
[1] | 王茂桓, 刘泽苁, 梁浩哲, 张英朝, 孙蕾. 多类型体系贡献率评估的综合问题研究[J]. 系统工程与电子技术, 2022, 44(5): 1572-1580. |
[2] | 孔德鹏, 马溢清, 郑保华, 王琦, 张志强, 赵珍强. 面向不确定多任务场景的海上联合作战装备体系贡献率评估方法[J]. 系统工程与电子技术, 2022, 44(12): 3775-3782. |
[3] | 杜敏, 程中华, 董恩志. 陆军防空旅装备体系贡献率评估理论研究[J]. 系统工程与电子技术, 2022, 44(1): 209-217. |
[4] | 周琛, 宋笔锋, 尚柏林, 王耀祖, 科尔沁. 基于作战网络可靠度的体系贡献率评估[J]. 系统工程与电子技术, 2021, 43(7): 1875-1883. |
[5] | 夏博远, 杨克巍, 杨志伟, 张小可, 赵丹玲. 基于杀伤网评估的装备组合多目标优化[J]. 系统工程与电子技术, 2021, 43(2): 399-409. |
[6] | 潘星, 左督军, 张跃东. 基于系统动力学的装备体系贡献率评估方法[J]. 系统工程与电子技术, 2021, 43(1): 112-120. |
[7] | 房桂祥, 谭跃进, 张木, 卜晓东, 张军. 基于作战环的导弹武器系统体系相对贡献率评估[J]. 系统工程与电子技术, 2020, 42(8): 1734-1739. |
[8] | 周璇, 何锋, 谷晓燕, 贾子睿, 熊华钢. 航电系统体系贡献率权重演化动态综合评估[J]. 系统工程与电子技术, 2020, 42(8): 1740-1750. |
[9] | 刘鹏, 赵丹玲, 谭跃进, 杨克巍, 豆亚杰. 面向多任务的武器装备体系贡献度评估方法[J]. 系统工程与电子技术, 2019, 41(8): 1763-1770. |
[10] | 游雅倩, 姜江, 孙建彬, 赵丹玲, 杨克巍. 基于证据网络的装备体系贡献率评估方法研究[J]. 系统工程与电子技术, 2019, 41(8): 1780-1788. |
[11] | 罗承昆, 陈云翔, 项华春, 王莉莉. 装备体系贡献率评估方法研究综述[J]. 系统工程与电子技术, 2019, 41(8): 1789-1794. |
[12] | 林木, 李小波, 王彦锋, 朱一凡. 基于QFD和组合赋权TOPSIS的体系贡献率能效评估[J]. 系统工程与电子技术, 2019, 41(8): 1802-1809. |
[13] | 张先超, 马亚辉. 体系能力模型与装备体系贡献率测度方法[J]. 系统工程与电子技术, 2019, 41(4): 843-849. |
[14] | 杨克巍, 杨志伟, 谭跃进, 赵青松. 面向体系贡献率的装备体系评估方法研究综述[J]. 系统工程与电子技术, 2019, 41(2): 311-321. |
[15] | 昝翔, 陈春良, 张仕新, 陈伟龙, 张立君. 考虑权重演化的装备重要度动态评估方法[J]. 系统工程与电子技术, 2017, 39(9): 2022-2030. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||