1 |
WU C L , LAW K . Modelling the delay propagation effects of multiple resource connections in an airline network using a Bayesian network model[J]. Transportation Research Part E: Logistics and Transportation Review, 2019, 122, 62- 77.
doi: 10.1016/j.tre.2018.11.004
|
2 |
PYRGIOTIS N , MALONE K M , ODONI A . Modelling delay propagation within an airport network[J]. Transportation Research Part C: Emerging Technologies, 2013, 27, 60- 75.
doi: 10.1016/j.trc.2011.05.017
|
3 |
王时敏. 恶劣天气对航班延误影响的初步量化研究[D]. 南京: 南京航空航天大学, 2017: 28-47.
|
|
WANG S M. Research on the impact of severe weather on flight delay[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017: 28-47.
|
4 |
程华, 李艳梅, 罗谦, 等. 基于C4.5决策树方法的到港航班延误预测问题研究[J]. 系统工程理论与实践, 2014, 34 (S1): 239- 247.
doi: 10.12011/1000-6788(2014)s1-239
|
|
CHENG H , LI Y M , LUO Q , et al. Study on flight delay with C4.5 decision tree based prediction method[J]. Systems Engineering-Theory and Practice, 2014, 34 (S1): 239- 247.
doi: 10.12011/1000-6788(2014)s1-239
|
5 |
REBOLLO J J , BALAKRISHNAN H . Characterization and prediction of air traffic delays[J]. Transportation Research Part C: Emerging Technologies, 2014, 44, 231- 241.
doi: 10.1016/j.trc.2014.04.007
|
6 |
CHAKRABARTY N. A data mining approach to flight arrival delay prediction for american airlines[C]//Proc. of the 9th Annual Information Technology, Electromechanical and Microelectronics Conference, 2019: 102-107.
|
7 |
LI Q , JING R Z . Characterization of delay propagation in the air traffic network[J]. Journal of Air Transport Management, 2021, 94, 102075.
doi: 10.1016/j.jairtraman.2021.102075
|
8 |
RODRÍGUEZ S Á , COMENDADOR F G , VALDÉS R A , et al. Assessment of airport arrival congestion and delay: prediction and reliability[J]. Transportation Research Part C: Emerging Technologies, 2019, 98, 255- 283.
doi: 10.1016/j.trc.2018.11.015
|
9 |
FLEURQUIN P , RAMASCO J J , EGUILUZ V M . Systemic delay propagation in the US airport network[J]. Scientific Reports, 2013, 3 (1): 3747- 3752.
|
10 |
WANG C Z , HU M H , YANG L , et al. Prediction of air traffic delays: an agent-based model introducing refined parameter estimation methods[J]. PLoS One, 2021, 16 (4): e0249754.
doi: 10.1371/journal.pone.0249754
|
11 |
WANG H W , PENG Z R , WANG D S , et al. Evaluation and prediction of transportation resilience under extreme weather events: a diffusion graph convolutional approach[J]. Transportation Research Part C: Emerging Technologies, 2020, 115, 102619.
doi: 10.1016/j.trc.2020.102619
|
12 |
YU B , LEE Y , SOHN K . Forecasting road traffic speeds by considering area-wide spatio-temporal dependencies based on a graph convolutional neural network (GCN)[J]. Transportation Research Part C: Emerging Technologies, 2020, 114, 189- 204.
doi: 10.1016/j.trc.2020.02.013
|
13 |
ZHAO L , SONG Y J , ZHANG C , et al. T-GCN: a temporal graph convolutional network for traffic prediction[J]. IEEE Trans.on Intelligent Transportation Systems, 2020, 21 (9): 3848- 3858.
doi: 10.1109/TITS.2019.2935152
|
14 |
KIM Y J, CHOI S, BRICENO S, et al. A deep learning approach to flight delay prediction[C]//Proc. of the IEEE/AIAA 35th Digital Avionics Systems Conference, 2016.
|
15 |
YU B , GUO Z , ASIAN S , et al. Flight delay prediction for commercial air transport: a deep learning approach[J]. Transportation Research Part E: Logistics and Transportation Review, 2019, 125, 203- 221.
doi: 10.1016/j.tre.2019.03.013
|
16 |
AI Y , PAN W J , YANG C Q , et al. A deep learning approach to predict the spatial and temporal distribution of flight delay in network[J]. Journal of Intelligent & Fuzzy Systems, 2019, 37 (5): 6029- 6037.
|
17 |
屈景怡, 叶萌, 渠星. 基于区域残差和LSTM网络的机场延误预测模型[J]. 通信学报, 2019, 40 (4): 149- 159.
|
|
QU J Y , YE M , QU X . Airport delay prediction model based on regional residual and LSTM network[J]. Journal on Communications, 2019, 40 (4): 149- 159.
|
18 |
LUO C Y , LI X T , YE Y M . PFST-LSTM: a spatio temporal LSTM model with pseudoflow prediction for precipitation nowcasting[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 14 (11): 843- 857.
|
19 |
CAI K Q , LI Y , FANG Y P , et al. A deep learning approach for flight delay prediction through time-evolving graphs[J]. IEEE Trans.on Intelligent Transportation Systems, 2022, 23 (8): 11397- 11407.
doi: 10.1109/TITS.2021.3103502
|
20 |
李娟. 基于深度学习的航班延误预测方法研究[D]. 南京: 南京航空航天大学, 2020: 35-55.
|
|
LI J. Research on flight delay forecasting method based on deep learning[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020: 35-55.
|
21 |
ZENG W L , LI J , QUAN Z B , et al. A deep graph-embedded LSTM neural network approach for airport delay prediction[J]. Journal of Advanced Transportation, 2021, 2021, 6638130.
|
22 |
BAO J , YANG Z , ZENG W L . Graph to sequence learning with attention mechanism for network-wide multi-step-ahead flight delay prediction[J]. Transportation Research Part C: Emerging Technologies, 2021, 130, 103323.
doi: 10.1016/j.trc.2021.103323
|
23 |
中国民用航空局. 2020年民航行业发展统计公报[EB/OL]. [2022-02-20]. http://www.caac.gov.cn/XXGK/XXGK/TJSJ/202106/P020210610582600192012.pdf.
|
|
Civil Aviation Administration of China. 2020 civil aviation industry development statistical bulletin[EB/OL]. [2022-02-20]. http://www.caac.gov.cn/XXGK/XXGK/TJSJ/202106/P020210610582600192012.pdf.
|
24 |
WU Y K , TAN H C , QIN L Q , et al. A hybrid deep learning based traffic flow prediction method and its understanding[J]. Transportation Research Part C: Emerging Technologies, 2018, 90, 166- 180.
doi: 10.1016/j.trc.2018.03.001
|
25 |
DO L N N , VU H L , VO B Q , et al. An effective spatial-temporal attention based neural network for traffic flow prediction[J]. Transportation Research Part C: Emerging Technologies, 2019, 108, 12- 28.
doi: 10.1016/j.trc.2019.09.008
|
26 |
YU B, YIN H T, ZHU Z X. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[C]//Proc. of the 27th International Joint Conference on Artificial Intelligence, 2018: 3634-3640.
|
27 |
SHUMAN D I , NARANG S K , FROSSARD P , et al. The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains[J]. IEEE Signal Processing Magazine, 2013, 30 (3): 83- 98.
doi: 10.1109/MSP.2012.2235192
|
28 |
DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]//Proc. of the International Conference on Neural Information Processing Systems, 2016, 29: 3844-3852.
|
29 |
GUI G , LIU F , SUN J L , et al. Flight delay prediction based on aviation big data and machine learning[J]. IEEE Trans.on Vehicular Technology, 2020, 69 (1): 140- 150.
doi: 10.1109/TVT.2019.2954094
|
30 |
BALLAKUR A A, ARYA A. Empirical evaluation of gated recurrent neural network architectures in aviation delay prediction[C]//Proc. of the 5th International Conference on Computing, Communication and Security, 2020.
|