1 |
王德纯. 宽带相控阵雷达[M]. 北京: 国防工业出版社, 2010.
|
|
WANG D C . Wideband phased array radar[M]. Beijing: National Defense Industry Press, 2010.
|
2 |
GAO B D , ZHANG F Z , SUN G Q , et al. Microwave photonic MIMO radar for high-resolution imaging[J]. Journal of Lightwave Technology, 2021, 39 (24): 7726- 7733.
doi: 10.1109/JLT.2021.3070591
|
3 |
TIAN B , LIU Y , HU P J , et al. Review of high-resolution imaging techniques of wideband inverse synthetic aperture radar[J]. Journal of Radars, 2020, 9 (5): 765- 802.
|
4 |
WEI S P , ZHANG L , LIU H W . Integrated kalman filter of accurate ranging and tracking with wideband radar[J]. IEEE Trans.on Geoscience and Remote Sensing, 2020, 58 (12): 8395- 8411.
doi: 10.1109/TGRS.2020.2987854
|
5 |
FROST O L . An algorithm for linearly constrained adaptive array processing[J]. Proc.of the IEEE, 1972, 60 (8): 926- 935.
doi: 10.1109/PROC.1972.8817
|
6 |
RAABE H P . Fast beamforming with circular receiving arrays[J]. IBM Journal of Research and Development, 1976, 20 (4): 398- 408.
doi: 10.1147/rd.204.0398
|
7 |
CHEN X Z, SHU T, YU K B, et al. Efficient time delay compensation at beamforming using subband decomposition for wideband phased array radar[C]//Proc. of the IEEE CIE International Conference on Radar, 2016.
|
8 |
CHEN X Z , SHU T , YU K B , et al. Implementation of an adaptive wideband digital array radar processor using subbanding for enhanced jamming cancellation[J]. IEEE Trans.on Aerospace and Electronic Systems, 2020, 57 (2): 762- 775.
|
9 |
LIU W , LANGLEY R J . An adaptive wideband beamforming structure with combined subband decomposition[J]. IEEE Trans.on Antennas and Propagation, 2009, 57 (7): 2204- 2207.
doi: 10.1109/TAP.2009.2021978
|
10 |
LIU W . Adaptive wideband beamforming with sensor delay-lines[J]. Signal Processing, 2009, 89 (5): 876- 882.
doi: 10.1016/j.sigpro.2008.11.005
|
11 |
XU R Q, CAO Z D, LIU Y T. Method of precise motion compensation for ISAR[C]//Proc. of the SPIE Annual Techincal Symposium. International Society for Optics and Photonics, 1989, 1152: 288-297.
|
12 |
WANG J F , DAYALAN K . Global range alignment for ISAR[J]. IEEE Trans.on Aerospace and Electronic Systems, 2003, 39 (1): 351- 357.
doi: 10.1109/TAES.2003.1188917
|
13 |
FLORES B C. Robust method for the motion compensation of ISAR imagery[C]//Proc. of the Robotics'91, 1992, 1607: 512-517.
|
14 |
FLORES B C, MARTINEZ A, CHEN C J. Radial motion compensation based on adaptive profile estimation[C]//Proc. of the SPIE Radar Processing and Applications, 1995, 2562: 9-20.
|
15 |
THOMAS G, CABRERA S D, FLORES B C. Selective motion compensation in ISAR imagery using time-frequency filtering[C]// Proc. of the Conference on Aerospace/Defence Sensing and Controls, 1996, 2757: 14-24.
|
16 |
PERRY R P , DIPIETRO R C , FANTE R L . SAR imaging of moving targets[J]. IEEE Trans.on Aerospace and Electronic Systems, 1999, 35 (1): 188- 200.
doi: 10.1109/7.745691
|
17 |
ZHAN M Y , HUANG P H , ZHU S Q , et al. A modified keystone transform matched filtering method for space-moving target detection[J]. IEEE Trans.on Geoscience and Remote Sensing, 2022, 60, 1- 16.
|
18 |
ZHENG J B , ZHU K L , NIU Z Y , et al. Generalized dechirp-Keystone transform for radar high-speed maneuvering target detection and localization[J]. Remote Sensing, 2021, 13 (17): 3367.
doi: 10.3390/rs13173367
|
19 |
翟心蝶, 杨刚, 廉杰. 基于二阶Keystone的微弱运动目标检测[J]. 现代防御技术, 2021, 49 (3): 105- 114.
|
|
ZHAI X D , YANG G , LIAN J . Weak moving target detection based on second-order keystone transform[J]. Modern Defense Technology, 2021, 49 (3): 105- 114.
|
20 |
WARD J. Space-time adaptive processing for airborne radar[R]. Lexington: MIT Lincoln Laboratory, 1994: 20-24.
|