1 |
HANIF H , NASIR M H N , FAIZAL M , et al. The rise of software vulnerability: taxonomy of software vulnerabilities detection and machine learning approaches[J]. Journal of Network and Computer Applications, 2021, 179, 103009.
doi: 10.1016/j.jnca.2021.103009
|
2 |
JI T T, WU Y, WANG C, et al. The coming era of alphahacking? A survey of automatic software vulnerability detection, exploitation and patching techniques[C]//Proc. of the IEEE 3rd International Conference on Data Science in Cyberspace, 2018: 53-60.
|
3 |
吴世忠, 郭涛, 董国伟, 等. 软件漏洞分析技术进展[J]. 清华大学学报(自然科学版), 2012, 52 (10): 1309- 1319.
|
|
WU S Z , GUO T , DONG G W , et al. Software vulnerability analyses: a road map[J]. Journal of Tsinghua University (Science and Technology), 2012, 52 (10): 1309- 1319.
|
4 |
WU J J. Literature review on vulnerability detection using NLP technology[EB/OL]. [2022-01-10]. https://arxiv.53yu.com/pdf/2104.11230.pdf.
|
5 |
ZOU D Q , ZHU Y W , XU S H , et al. Interpreting deep learning-based vulnerability detector predictions based on heuristic searching[J]. ACM Trans.on Software Engineering and Methodology, 2021, 30 (2): 1- 31.
|
6 |
李韵, 黄辰林, 王中锋, 等. 基于机器学习的软件漏洞挖掘方法综述[J]. 软件学报, 2020, 31 (7): 2040- 2061.
doi: 10.13328/j.cnki.jos.006055
|
|
LI Y , HUANG C L , WANG Z F , et al. Survey of software vulnerability mining methods based on machine learning[J]. Journal of Software, 2020, 31 (7): 2040- 2061.
doi: 10.13328/j.cnki.jos.006055
|
7 |
顾绵雪, 孙鸿宇, 韩丹, 等. 基于深度学习的软件安全漏洞挖掘[J]. 计算机研究与发展, 2021, 58 (10): 2140- 2162.
doi: 10.7544/issn1000-1239.2021.20210620
|
|
GU M X , SUN H Y , HAN D , et al. Software security vulnerability mining based on deep learning[J]. Journal of Computer Research and Development, 2021, 58 (10): 2140- 2162.
doi: 10.7544/issn1000-1239.2021.20210620
|
8 |
ZAGANE M , ABDI M K , ALENEZI M . Deep learning for software vulnerabilities detection using code metrics[J]. IEEE Access, 2020, 8, 74562- 74570.
doi: 10.1109/ACCESS.2020.2988557
|
9 |
常超, 刘克胜, 赵军, 等. 基于复用代码检测的缺陷发现方法[J]. 系统工程与电子技术, 2017, 39 (9): 2157- 2164.
|
|
CHANG C , LIU K S , ZHAO J , et al. Clone flaw detection method based on clone code detection[J]. Systems Engineering and Electronics, 2017, 39 (9): 2157- 2164.
|
10 |
KIM S, WOO S, LEE H, et al. Vuddy: a scalable approach for vulnerable code clone discovery[C]//Proc. of the IEEE Symposium on Security and Privacy, 2017: 595-614.
|
11 |
CAO D F, HUANG J, ZHANG X Y, et al. FTCLNet: convolutional LSTM with Fourier transform for vulnerability detection[C]//Proc. of the IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications, 2020: 539-546.
|
12 |
LIU S G , LIN G J , QU L E , et al. CD-VulD: cross-domain vulnerability discovery based on deep domain adaptation[J]. IEEE Trans.on Dependable and Secure Computing, 2022, 19 (1): 438- 451.
doi: 10.1109/TDSC.2020.2984505
|
13 |
段旭, 吴敬征, 罗天悦, 等. 基于代码属性图及注意力双向LSTM的漏洞挖掘方法[J]. 软件学报, 2020, 31 (11): 3404- 3420.
|
|
DUAN X , WU J Z , LUO T Y , et al. Vulnerability mining method based on code property graph and attention BiLSTM[J]. Journal of Software, 2020, 31 (11): 3404- 3420.
|
14 |
王晓萌, 管志斌, 辛伟, 等. 基于深度卷积神经网络的源代码缺陷检测方法[J]. 清华大学学报(自然科学版), 2021, 61 (11): 1267- 1272.
|
|
WANG X M , GUAN Z B , XIN W , et al. Source code defect detection using deep convolutional neural networks[J]. Journal of Tsinghua University (Science and Technology), 2021, 61 (11): 1267- 1272.
|
15 |
ZHOU Y Q, LIU S Q, SIOW J, et al. Devign: effective vulnerability identification by learning comprehensive program semantics via graph neural networks[C]//Proc. of the Annual Conference on Neural Information Processing Systems, 2019: 10197-10207.
|
16 |
CHENG X , WANG H Y , HUA J Y , et al. DeepWukong: statically detecting software vulnerabilities using deep graph neural network[J]. ACM Trans.on Software Engineering and Methodology, 2021, 30 (3): 1- 33.
|
17 |
LI Z , ZOU D Q , XU S H , et al. SySeVR: a framework for using deep learning to detect software vulnerabilities[J]. IEEE Trans.on Dependable and Secure Computing, 2022, 19 (4): 2244- 2258.
|
18 |
ZHENG W N, JIANG Y, SU X H. VulSPG: vulnerability detection based on slice property graph representation learning[EB/OL]. [2022-01-14]. https://arxiv.53yu.com/pdf/2109.02527.pdf.
|
19 |
LI Z , ZOU D Q , XU S H , et al. Vuldeepecker: a deep learning-based system for vulnerability detection[J]. IEEE Trans.on Dependable and Secure Computing, 2021, 18 (5): 2224- 2236.
|
20 |
LI X , WANG L , XIN Y , et al. Automated vulnerability detection in source code using minimum intermediate representation learning[J]. Applied Sciences, 2020, 10 (5): 1692.
|
21 |
LE Q, MIKOLOV T. Distributed representations of sentences and documents[C]//Proc. of the International Conference on Machine Learning, 2014: 1188-1196.
|
22 |
GRATTAROLA D , ALIPPI C . Graph neural networks in tensor flow and Keras with spektral[J]. IEEE Computational Intelligence Magazine, 2021, 16 (1): 99- 106.
|
23 |
XU K Y L, LI C T, TIAN Y L, et al. Representation learning on graphs with jumping knowledge networks[C]//Proc. of the International Conference on Machine Learning, 2018: 5453-5462.
|
24 |
VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. [2022-01-14]. https://arxiv.org/pdf/1710.10903.pdf.
|
25 |
LEE J, LEE I, KANG J. Self-attention graph pooling[C]//Proc. of the International Conference on Machine Learning, 2019: 3734-3743.
|
26 |
National Institute of Standards and Technology. Software assurance reference dataset[EB/OL]. [2022-01-20]. https://samate.nist.gov/SRD/view.php?tsID=108.
|
27 |
KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. [2022-01-20]. https://arxiv.53yu.com/pdf/1609.02907.pdf.
|
28 |
HAMILTON W, YING Z, LESKOVEC J. Inductive representation learning on large graphs[C]//Proc. of the 31st International Conference on Neural Information Processing Systems, 2017: 1025-1035.
|
29 |
BIANCHI F M , GRATTAROLA D , LIVI L , et al. Graph neural networks with convolutional ARMA filters[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2022, 44 (7): 3496- 3507.
|
30 |
WANG Y , SUN Y B , LIU Z W , et al. Dynamic graph CNN for learning on point clouds[J]. ACM Trans.on Graphics, 2019, 38 (5): 1- 12.
|
31 |
GAO H Y, JI S W. Graph u-nets[C]//Proc. of the International Conference on Machine Learning, 2019: 2083-2092.
|
32 |
YING R, YOU J, MORRIS C, et al. Hierarchical graph representation learning with differentiable pooling[C]//Proc. of the 32nd International Conference on Neural Information Processing Systems, 2018: 4805-4815.
|
33 |
BIANCHI F M, GRATTAROLA D, ALIPPI C. Spectral clustering with graph neural networks for graph pooling[C]//Proc. of the International Conference on Machine Learning, 2020: 874-883.
|
34 |
DAVID A W. Flawfinder[EB/OL]. [2022-02-10]. https://dwheeler.com/flawfinder/.
|