1 |
FORSTER C, PIZZOLI M, SCARAMUZZA D. SVO: fast semi-direct monocular visual odometry[C]//Proc. of the IEEE International Conference on Robotics and Automation, 2014: 15-22.
|
2 |
ENGEL J, SCHOPS T, CREMERS D. LSD-SLAM: large-scale direct monocular SLAM[C]//Proc. of the European Conference on Computer Vision, 2014: 834-849.
|
3 |
USENKO V, ENGEL J, STUCKLER J, et al. Direct visual-inertial odometry with stereo cameras[C]//Proc. of the IEEE International Conference on Robotics and Automation, 2016: 1885-1892.
|
4 |
YANG Z F , SHEN S J . Monocular visual-inertial state estimation with online initialization and camera-IMU extrinsic calibration[J]. IEEE Trans.on Automation Science and Engineering, 2016, 14 (1): 39- 51.
|
5 |
LEUTENEGGER S , LYNEN S , BOSSE M , et al. Keyframe-based visual-inertial odometry using nonlinear optimization[J]. The International Journal of Robotics Research, 2015, 34 (3): 314- 334.
doi: 10.1177/0278364914554813
|
6 |
LI M , MOURIKIS A I . High-precision, consistent EKF-based visual-inertial odometry[J]. The International Journal of Robot-tics Research, 2013, 32 (6): 690- 711.
doi: 10.1177/0278364913481251
|
7 |
NEWCOMBE R A, LOVEGROVE S J, DAVISON A J. DTAM: dense tracking and mapping in real-time[C]//Proc. of the International Conference on Computer Vision, 2011: 2320-2327.
|
8 |
KERL C, STURM J, CREMERS D. Dense visual SLAM for RGB-D cameras[C]//Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013: 2100-2106.
|
9 |
PIZZOLI M, FORSTER C, SCARAMUZZA D. REMODE: probabilistic, monocular dense reconstruction in real time[C]//Proc. of the IEEE International Conference on Robotics and Automation, 2014: 2609-2616.
|
10 |
ENGEL J, USENKO V, CREMERS D. A photometrically calibrated benchmark for monocular visual odometry[EB/OL]. [2022-01-24]. https://doi.org/10.48550/arXiv.1607.02555.
|
11 |
KIM J, KIM A. Toward exposure control for robot vision in rapidly changing environment[C]//Proc. of the World Congress on Advances in Nano, Bio, Robotics and Energy, 2017.
|
12 |
SHIM I, LEE J Y, KWEON I S. Auto-adjusting camera exposure for outdoor robotics using gradient information[C]//Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014: 1011-1017.
|
13 |
ZHANG Z, FORSTER C, SCARAMUZZA D. Active exposure control for robust visual odometry in HDR environments[C]//Proc. of the IEEE International Conference on Robotics and Automation, 2017: 3894-3901.
|
14 |
LI S, HANDA A, ZHANG Y, et al. HDRFusion: HDR SLAM using a low-cost auto-exposure RGB-D sensor[C]//Proc. of the 4th International Conference on 3D Vision, 2016: 314-322.
|
15 |
JⅡN H, FAVARO P, SOATTO S. Real-time feature tracking and outlier rejection with changes in illumination[C]//Proc. of the 8th IEEE International Conference on Computer Vision, 2001: 684-689.
|
16 |
XIAO Y , RUAN X , ZHU X Q . PC-VINS-Mono: a robust mono visual-inertial odometry with photometric calibration[J]. Journal of Autonomous Intelligence, 2019, 1 (2): 29- 35.
doi: 10.32629/jai.v1i2.33
|
17 |
QIN T , LI P L , SHEN S J . Vins-mono: a robust and versatile monocular visual-inertial state estimator[J]. IEEE Trans.on Robotics, 2018, 34 (4): 1004- 1020.
doi: 10.1109/TRO.2018.2853729
|
18 |
BAILEY T , DURRANT-WHYTE H F . Simultaneous localization and mapping (SLAM): part Ⅱ[J]. IEEE Robotics & Auto-mation Magazine, 2006, 13 (3): 108- 117.
|
19 |
LEUTENEGGER S , LYNEN S , BOSSE M , et al. Keyframe-based visual-inertial odometry using nonlinear optimization[J]. International Journal of Robotics Research, 2014, 34 (3): 314- 334.
|
20 |
ENGEL J , KOLTUN V , CREMER D . Direct sparse odometry[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2017, 40 (3): 611- 625.
|
21 |
NEWCOMBE R A, IZADI S, HILLIGES O, et al. KinectFusion: real-time dense surface mapping and tracking[C]//Proc. of the IEEE International Symposium on Mixed and Augmented Reality, 2011: 127-136.
|
22 |
HARRIS C G, STEPHENS M J. A combined corner and edge detector[C]//Proc. of the 4th Alvey Vision Conference, 1988: 147-151.
|
23 |
高翔, 张涛. 视觉SLAM十四讲: 从理论到实践[M]. 2版 北京: 电子工业出版社, 2019: 40- 61.
|
|
GAO X , ZHANG T . Visual SLAM XIV: from theory to practice[M]. 2nd ed Beijing: Electronics Industry Press, 2019: 40- 61.
|
24 |
PIZER S M , AMBURN E P , AUSTIN J D , et al. Adaptive histogram equalization and its variations[J]. Computer Vision Graphics & Image Processing, 1987, 39 (3): 355- 368.
|
25 |
JOO S , DAVID K , FRAHM G J , et al. Joint radiometric calibration and feature tracking for an adaptive stereo system[J]. Computer Vision and Image Understanding, 2010, 114 (5): 574- 582.
|
26 |
KALAL Z, MIKOLAJCZYK K, MATAS J. Forward-backward error: automatic detection of tracking failures[C]//Proc. of the 20th International Conference on Pattern Recognition, 2010: 2756-2759.
|
27 |
FISCHLER M A , BOLLES R C . Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24 (6): 381- 395.
|
28 |
DEBEVEC P E, MALIK J. Recovering high dynamic range radiance maps from photographs[C]//Proc. of the 24th Annual Conference on Computer Graphics and Interactive Techniques, 1997: 369-378.
|
29 |
CAMARGO A . A proof of the Schwarz theorem on mixed partial derivatives via elementary approximation theory[J]. Elements of Mathematics, 2020, 75 (3): 125- 128.
|
30 |
HEINLY J, DUNN E, FRAHM J M. Comparative evaluation of binary features[C]//Proc. of the European Conference on Computer Vision, 2012: 759-773.
|