系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (5): 1489-1495.doi: 10.12305/j.issn.1001-506X.2023.05.25

• 制导、导航与控制 • 上一篇    

基于灰狼优化算法的快速选星方法

余德荧, 李厚朴, 纪兵, 边少锋   

  1. 海军工程大学电气工程学院, 湖北 武汉 430000
  • 收稿日期:2022-01-05 出版日期:2023-04-21 发布日期:2023-04-28
  • 通讯作者: 李厚朴
  • 作者简介:余德荧 (1998—), 男, 博士研究生, 主要研究方向为GNSS精密定位
    李厚朴 (1985—), 男, 教授, 博士, 主要研究方向为卫星导航、海洋测绘
    纪兵 (1978—), 男, 副教授, 博士, 主要研究方向为卫星导航、地球物理
    边少锋 (1961—), 男, 教授, 博士, 主要研究方向为大地测量、卫星导航、地球物理

Fast satellite selection method based on grey wolf optimization algorithm

Deying YU, Houpu LI, Bing JI, Shaofeng BIAN   

  1. School of Electrical Engineering, Naval University of Engineering, Wuhan 430000, China
  • Received:2022-01-05 Online:2023-04-21 Published:2023-04-28
  • Contact: Houpu LI

摘要:

针对传统的遍历法无法满足多全球卫星导航系统(global navigation satellite system, GNSS)组合导航选星的实时性需求, 提出了一种基于灰狼优化(grey wolf optimization, GWO)算法的快速选星方法。该算法利用自适应收敛因子和信息反馈机制, 在局部寻优与全局搜索之间实现平衡, 表现出良好的求解性能, 即可以保证在获得理想几何构型的同时大幅减少接收机运算量。经过仿真实验, 分析了参数选取对GWO快速选星算法结果的影响。利用实测数据对所提算法进行验证, 结果表明,所提算法在四系统组合下, 从49颗可见星中选择7颗进行定位时, 与遍历法相比, 几何精度因子(geometric dilution of precision, GDOP)误差仅为1.8%, 而计算效率提高了71.7%。该算法适用于多GNSS组合导航定位不同选星数目的情况, 还可以拓展至区域导航卫星系统。

关键词: 多全球卫星导航系统组合系统, 快速选星, 灰狼优化算法, 几何精度因子, 计算效率

Abstract:

Aiming at the fact that the traditional traversal method cannot meet the real-time requirements of satellite selection for integrated navigation of multi-global navigation satellite system (GNSS), a fast satellite selection method based on grey wolf optimization (GWO) algorithm is proposed. The algorithm uses adaptive regulatory factor and information feedback mechanism to achieve a balance between local optimization and global search, and shows good calculating performance, which can ensure ideal geometric structure and greatly reduce the computation of receiver. After simulation experiments, the influence of parameter selection on GWO fast satellite selection algorithm is analyzed. The experimental data are used to verify the proposed algorithm. The results show that when selecting 7 of the 49 visible satellites for positioning under the four-system combination, the geometric dilution of precision error is 1.8% and the computational efficiency increases by 71.7% compared with traversal method. The algorithm can be applied to multi-GNSS system with different number of satellites, and it can also be extended to regional navigation satellite system.

Key words: multi-global navigation satellite system (GNSS) integrated system, fast satellite selection, grey wolf optimization (GWO) algorithm, geometric dilution of precision, computational efficiency

中图分类号: