| 1 | MENG Q ,  LIU J Y ,  ZENG Q H , et al.  Improved ARAIM fault modes determination scheme based on feedback structure with probability accumulation[J]. GPS Solutions, 2019, 23 (1): 16. doi: 10.1007/s10291-018-0809-8
 | 
																													
																						| 2 | PAN W ,  ZHAN X Q ,  ZHANG X .  Fault exclusion method for ARAIM based on tight GNSS/INS integration to achieve CATI approach[J]. IET Radar, Sonar & Navigation, 2019, 13 (11): 1909- 1917. | 
																													
																						| 3 | BIJJAHALLI S ,  SABATINI R ,  GARDI A .  Advances in intelligent and autonomous navigation systems for small UAS[J]. Progress in Aerospace Sciences, 2020, 115, 100617. doi: 10.1016/j.paerosci.2020.100617
 | 
																													
																						| 4 | CHEN C B ,  CHEN S F ,  HU G S , et al.  An auto-landing strategy based on pan tilt based visual servoing for unmanned aerial vehicle in GNSS-denied environments[J]. Aerospace Science and Technology, 2021, 116, 106891. doi: 10.1016/j.ast.2021.106891
 | 
																													
																						| 5 | ZHENG X E ,  XU C D ,  WANG Y D , et al.  A dynamic-data-driven method for improving the performance of receiver autonomous integrity monitoring[J]. IEEE Access, 2021, 9, 55833- 55843. doi: 10.1109/ACCESS.2021.3070658
 | 
																													
																						| 6 | BLANCH J ,  WALTER T ,  ENGE P .  Protection levels after fault exclusion for advanced RAIM[J]. Navigation-Journal of the Institute Navigation, 2017, 64 (4): 505- 513. doi: 10.1002/navi.210
 | 
																													
																						| 7 | ZHAO J ,  SONG D ,  XU C D , et al.  A modified LSR algorithm based on the critical value of characteristic slopes for RAIM[J]. IEEE Access, 2019, 7, 70102- 70116. doi: 10.1109/ACCESS.2019.2917377
 | 
																													
																						| 8 | CAPUANO V ,  SHEHAJ E ,  BLUNT P , et al.  High accuracy GNSS based navigation in GEO[J]. Acta Astronautica, 2017, 136, 332- 341. doi: 10.1016/j.actaastro.2017.03.014
 | 
																													
																						| 9 | PARKINSON B W ,  AXELRAD P .  Autonomous GPS integrity monitoring using the pseudorange residual[J]. Navigation, Journal of the Institute Navigation, 1988, 35 (2): 225- 274. | 
																													
																						| 10 | BRENNER M .  Integrated GPS/Inertial fault detection availability[J]. Navigation, Journal of the Institute Navigation, 1996, 43 (2): 111- 130. doi: 10.1002/j.2161-4296.1996.tb01920.x
 | 
																													
																						| 11 | ZHANG Y, WANG E S, GUO J, et al. Analysis of fault detection based on least squares approach for BDS integrity monitoring[C]//Proc. of the 16th IEEE Conference on Industrial Electronics and Application, 2021: 827-832. | 
																													
																						| 12 | XIE J S ,  XIN J ,  GUO R , et al.  Design and realization of RAIM algorithms for BDS[J]. Journal of Navigation and Positioning, 2018, 6 (1): 54- 59. | 
																													
																						| 13 | ZHONG L ,  LIU J Y ,  LI R B , et al.  Approach for detecting soft faults in GPS/INS integrated navigation based on LS-SVM and AIME[J]. The Journal of Navigation, 2017, 70 (3): 561- 579. doi: 10.1017/S037346331600076X
 | 
																													
																						| 14 | FENG S J ,  OCHIENG W Y .  A difference test method for early detection of slowly growing errors in GNSS positioning[J]. The Journal of Navigation, 2007, 60 (3): 427- 442. doi: 10.1017/S037346330700433X
 | 
																													
																						| 15 | 刘文祥, 李峥嵘, 王飞雪.  一种可检测和改正微小慢变伪距偏差的新RAIM方法[J]. 宇航学报, 2010, 31 (4): 1024- 1029. | 
																													
																						|  | LIU W X ,  LI Z R ,  WANG F X .  A new RAIM method for detecting and correcting weak pseduo-range bias under gradual change[J]. Journal of Astronautics, 2010, 31 (4): 1024- 1029. | 
																													
																						| 16 | 沙海, 黄新明, 刘文祥, 等.  基于非相干积累的微小伪距偏差RAIM方法研究[J]. 宇航学报, 2014, 35 (6): 708- 712. | 
																													
																						|  | SHA H ,  HUANG X M ,  LIU W X , et al.  Research on the RAIM method based on non-coherent accumulation for tiny pseudo-range bias[J]. Journal of Astronautics, 2014, 35 (6): 708- 712. | 
																													
																						| 17 | RAN J H ,  JIN M Z ,  GAN X L .  A new RAIM algorihm based on multivariate cumulative sum and its improvement[J]. Neurocomputing, 2016, 171, 113- 117. doi: 10.1016/j.neucom.2015.06.025
 | 
																													
																						| 18 | 李臻, 宋丹, 张鹏飞, 等.  基于抗差卡尔曼滤波和外推-积累的RAIM方法[J]. 系统工程与电子技术, 2017, 39 (9): 2094- 2099. | 
																													
																						|  | LI Z ,  SONG D ,  ZHANG P F , et al.  RAIM method based on robust extetended Kalman filter and extrpolation-accumulation[J]. Systems Engineering and Electronics, 2017, 39 (9): 2094- 2099. | 
																													
																						| 19 | YANG Z N, LI H J, DU X J. Improved RAIM algorithm based on Kalman innovation monitoring method[C]//Proc. of the China Satellite Navigation Conference, 2018: 759-768. | 
																													
																						| 20 | EGEA-ROCA D, SECO-GRANADOS G, LOPEZ-SALCEDO J A. Sequential change detection for next-generation RAIM algorithms[C]//Proc. of the 30th International Technical Meeting of the Satellite Division of the Institute of Navigation, 2017. | 
																													
																						| 21 | MILNER C, PERVAN B, BLANCH J. Evaluating integrity and continuity over time in advanced RAIM[C]//Proc. of the IEEE/ION Position, Location and Navigation Sympousium, 2020: 502-514. | 
																													
																						| 22 | YU S Q ,  ZHANG X H ,  GUO F , et al.  Recent advances in precision approach based on GNSS[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40 (3): 222000- 022200. | 
																													
																						| 23 | EGEA-ROCA D ,  GUEPIE B K .  Two strategies in transient change detection[J]. IEEE Trans.on Signal Processing, 2022, 70, 1418- 1433. doi: 10.1109/TSP.2022.3158008
 | 
																													
																						| 24 | SONG D ,  SHI C ,  WANG Z P , et al.  Correlation-weighted least squares residual algorithm for RAIM[J]. Chinese Journal of Aeronautics, 2020, 33 (5): 1505- 1516. doi: 10.1016/j.cja.2019.12.012
 | 
																													
																						| 25 | SUN G H ,  XU C D ,  SONG D , et al.  An enhanced least squares residual RAIM algorithm based on optimal decentralized factor[J]. Chinese Journal of Aeronautics, 2020, 33 (12): 3369- 3379. doi: 10.1016/j.cja.2020.06.027
 | 
																													
																						| 26 | LIU B Y ,  GAO Y ,  GAO Y T , et al.  HPL calculation improvement for Chi-squared residual-based ARAIM[J]. GPS Solutions, 2022, 26 (2): 45. doi: 10.1007/s10291-021-01220-0
 | 
																													
																						| 27 | JOERGER M ,  CHAN F C ,  PERVAN B .  Solution separation versus residual-based RAIM[J]. Navigation, Journal of the Institute Navigation, 2014, 61 (4): 273- 291. doi: 10.1002/navi.71
 | 
																													
																						| 28 | JOERGER M ,  PERVAN B .  Fault detection and exclusion using solution separation and Chi-squared ARAIM[J]. IEEE Trans.on Aerospace and Electronic Systems, 2016, 52 (2): 726- 742. | 
																													
																						| 29 | MENG Q ,  LIU J Y ,  ZENG Q H , et al.  Impact of one satellite outage on ARAIM depleted constellation configurations[J]. Chinese Journal of Aeronautics, 2019, 32 (4): 967- 977. | 
																													
																						| 30 | MA X P ,  YU K G ,  MONTILLET J P , et al.  Equivalence proof and performance analysis of weighted least squares residual method and weighted parity vector method in RAIM[J]. IEEE Access, 2019, 7, 97803- 97814. | 
																													
																						| 31 | BHATTI U I ,  OCHIENG W Y .  Failure modes and models for integrated GPS/INS systems[J]. The Journal of Navigation, 2007, 60 (2): 327- 348. |